Skip to main content

Advertisement

Log in

The influence of productivity on abyssal foraminiferal biodiversity

  • Review
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The quantity and quality of organic matter reaching the deep-sea floor is believed to exert a strong control on benthic foraminiferal assemblages, including the diversity and density of populations and the distribution patterns of species. In addition, some species seem to be associated with strong seasonality in primary productivity. We test relationships between diversity and mean annual productivity based on carefully selected datasets (>63-μm sieve fraction including soft-shelled taxa) from the NE Atlantic, Weddell Sea, and Equatorial and North Pacific. We used (1) ‘live’ (Rose Bengal stained) foraminiferal density, (2) mean annual surface productivity and (3) estimated organic carbon flux to the seafloor as proxies for food supply to the benthos. A suite of species richness, diversity and dominance measures all decreased significantly with increasing density, whereas species density showed a significant increase. In contrast, none of the relationships between these measures and primary productivity or its seasonality were significant. Only the Margalef and Brillouin indices exhibited a significant decrease with increasing values of carbon flux to the sea floor. When sites from the NE Atlantic were treated separately, significant relationships (−ve) emerged between flux and all diversity measures, and between foraminiferal densities and most (8 of 9) diversity measures. For the equatorial Pacific, however, these relationships were mostly (16 of 18) not significant. Size fractioned (>150-μm and >63-μm fraction including phytodetritus) data from the NE Atlantic samples yielded significant correlations (−ve) between several diversity measures and foraminiferal densities, but many fewer when related to estimated carbon flux to the seafloor. We also considered published datasets from the Arctic (Wollenburg and Mackensen Mar Micropaleontol 34: 153–185, 1998) and North Atlantic (Corliss et al. Deep-Sea Res 56: 835–841, 2009) Oceans. Diversity values (Fisher α index based on ‘live’ counts) from seasonally and permanently ice-covered areas (depth range, 94–4,427 m) in the Arctic were significantly correlated (+ve) with estimated flux. Correlations were also significant for sites below permanent ice cover (1,051–4,427 m) and for those >4,000 m. Positive correlations between foraminiferal density and diversity were significant for the whole dataset and for sites with permanent ice cover, but not for the deep sites. Analysis of unstained calcareous foraminifera of Holocene age from the N Atlantic (2,118–4,673 m water depth) revealed significant relationships between diversity and seasonality, but not with flux. Additional analyses of ‘seasonal’ and ‘non-seasonal’ N Atlantic sites with a comparable range of estimated flux values (2–4 g C m−2 year−1) revealed that diversity increased with increasing flux and density in both cases, with significantly lower diversity at the seasonal compared to the non-seasonal sites. The contradictions between our data (−ve relationship between food availability and diversity) and those of Wollenburg and Corliss (+ve relationship) are difficult to explain and underline the need for further studies employing consistent methods to analyse ‘entire live’ assemblages across productivity gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energy-equivalence rule. Science 297:1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Altenbach AV (1985) Die Biomasse der benthischen Foraminiferen. Auswertungen von "METEOR"—Expeditionen im östlichen Nordatlantik: PhD thesis, University of Kiel

  • Altenbach AV, Struck U (2001) On the coherence of organic carbon flux and benthic forminiferal biomass. J Foramin Res 31:79–85

    Article  Google Scholar 

  • Altenbach AV, Pflaumann U, Schiebel R, Thies A, Timm S, Trauth M (1999) Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon. J Foramin Res 29:173–185

    Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  CAS  Google Scholar 

  • Bernstein BB, Hessler RR, Smith R, Jumars PA (1978) Spatial dispersion of benthic Foraminifera in the abyssal central North Pacific. Limnol Oceanogr 23:401–416

    Article  Google Scholar 

  • Bett BJ (2001) UK Atlantic Margin Environmental Survey: introduction and overview of bathyal benthic ecology. Cont Shelf Res 21:917–956

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, de Menocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1265

    Google Scholar 

  • Bremer ML, Lohmann GP (1982) Evidence for primary control of the distribution of certain Atlantic Ocean benthonic foraminifera by degree of carbonate saturation. Deep-Sea Res 29:987–998

    Article  CAS  Google Scholar 

  • Buzas MA, Gibson TG (1969) Species diversity: benthonic foraminifera in western North Atlantic. Science 163:72–75

    Article  PubMed  CAS  Google Scholar 

  • Caralp M (1989) Abundance of Bulimina exilis and Melonis barleeanum: Relationship to the quality of marine organic matter. Geo-Mar Lett 9:37–43

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253

    Article  PubMed  Google Scholar 

  • Chown SL, Gaston KJ (1999) Patterns in procellariiform diversity as a test of species-energy theory in marine systems. Evol Ecol Res 1:365–373

    Google Scholar 

  • Corliss BH (1979) Recent deep-sea benthonic foraminiferal distributions in the southeast Indian Ocean: inferred bottom-water routes and ecological implications. Mar Geol 31:115–138

    Article  CAS  Google Scholar 

  • Corliss BH (1983) Distribution of Holocene deep-sea benthonic foraminifera in the southeast Indian Ocean. Deep-Sea Res 30:95–117

    Article  Google Scholar 

  • Corliss BH (1985) Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314:435–438

    Article  Google Scholar 

  • Corliss BH, Chen C (1988) Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16:716–719

    Article  Google Scholar 

  • Corliss BH, Emerson S (1990) Distribution of Rose Bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine. Deep-Sea Res 37:381–400

    Article  Google Scholar 

  • Corliss BH, Martinson DG, Keffer T (1984) Late Quaternary deep-ocean circulation. Bull Geol Soc Am 97:1106–1121

    Article  Google Scholar 

  • Corliss BH, Brown CW, Sun X, Showers WJ (2009) Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep-Sea Res I 56:835–841

    Google Scholar 

  • Cornelius N, Gooday AJ (2004) ‘Live’ (stained) deep-sea benthic foraminifera in the western Weddell Sea: trends in abundance, diversity and taxonomic composition in relation to water depth. Deep-Sea Res II 51:1571–1602

    Article  Google Scholar 

  • Culver SJ, Buzas MA (2000) Global latitudinal species diversity gradient in deep-sea benthic foraminifera. Deep-Sea Res I 47:259–275

    Article  Google Scholar 

  • Cutter GR, Diaz RD, Lee J (1994) Foraminifera from the continental slope off Cape Hatteras, North Carolina. Deep-Sea Res II 41:951–963

    Article  Google Scholar 

  • De Rijk S, Troelstra SR, Rohling EJ (1999) Benthic foraminiferal distribution in the Mediterranean Sea. J Foramin Res 29:93–103

    Google Scholar 

  • De Rijk S, Jorissen FJ, Rohling EJ, Troelstra SR (2000) Organic flux on bathymetric zonation of Mediterranean benthic Foraminifera. Mar Micropaleontol 40:151–166

    Article  Google Scholar 

  • Douglas RG, Woodruff F (1981) Deep-sea benthic foraminifera. In: Emiliani E (ed) The oceanic lithosphere. The Sea, vol 7. Wiley, New York, pp 1233–1327

    Google Scholar 

  • Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob Biogeochem Cycles 21. doi:10.1029/2006/GB002907

  • Fontanier C, Jorissen FJ, Chaillou G, Anschutz G, Grémare A, Griveaud C (2005) Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep-Sea Res I 52:1189–1227

    Article  Google Scholar 

  • Gerlach SA, Hahn AE, Schrage M (1985) Size spectra of benthic biomass and metabolism. Mar Ecol Prog Ser 26:161–173

    Article  Google Scholar 

  • Gibson TG, Buzas MA (1973) Species diversity: patterns in modern and Miocene foraminifera of the eastern margin of North America. Bull Geol Soc Am 84:217–238

    Article  Google Scholar 

  • Glover AG, Smith CR, Paterson GLJ, Wilson GDF, Hawkins L, Sheader M (2002) Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Mar Ecol Prog Ser 240:157–170

    Article  Google Scholar 

  • Gooday AJ (1986) Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res 33:1345–1373

    Article  Google Scholar 

  • Gooday AJ (1988) A response by benthic foraminifera to phytodetritus deposition in the deep sea. Nature 332:70–73

    Article  Google Scholar 

  • Gooday AJ (1993) Deep-sea benthic foraminiferal species which exploit phytodetritus: characteristic features and controls on distribution. Mar Micropaleontol 22:187–205

    Article  Google Scholar 

  • Gooday AJ (1996) Epifaunal and shallow infaunal foraminiferal communities at three abyssal NE Atlantic sites subject to differing phytodetritus regimes. Deep-Sea Res I 43:1395–1431

    Article  Google Scholar 

  • Gooday AJ (2001) Deep-Sea benthic foraminifera. In: Steele J, Thorpe SA, Turekian KK (Eds) An Encyclopedia of Ocean Science. Academic, New York, pp 274–286

  • Gooday AJ (2003) Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: a review of environmental influences on faunal characteristics. Adv Mar Biol 46:1–90

    Article  PubMed  Google Scholar 

  • Gooday AJ, Hughes JA (2002) Foraminifera associated with phytodetritus deposits at a bathyal site in the northern Rockall Trough (NE Atlantic): seasonal contrasts and a comparison of stained and dead assemblages. Mar Micropaleontol 46:83–110

    Article  Google Scholar 

  • Gooday AJ, Levin LA, Linke P, Heeger T (1992) The role of benthic foraminifera in deep-sea food webs and carbon cycling. In: Rowe GT and Pariente V (Eds) Deep-Sea Food Chains and the Global Carbon Cycle, Kluwer, Dordrecht, pp 63–91

  • Gooday AJ, Bett BJ, Shires R, Lambshead PJD (1998) Deep-sea benthic foraminiferal diversity in the NE Atlantic and NW Arabian sea: a synthesis. Deep-Sea Res II 45:165–201

    Article  Google Scholar 

  • Gooday AJ, Bernhard JM, Levin LA, Suhr SB (2000) Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Res II 47:25–54

    Article  Google Scholar 

  • Gooday AJ, Hughes JA, Levin LA (2001) The foraminiferan macrofauna from three North Carolina (U.S.A.) slope sites with contrasting carbon flux: a comparison with the metazoan macrofauna. Deep-Sea Res I 48:1709–1739

    Article  Google Scholar 

  • Gooday AJ, Hori S, Todo Y, Okamoto T, Kitazato H, Sabbatini A (2004) Soft-walled, monothalamous benthic foraminiferans in the Pacific, Indian and Atlantic Oceans: aspects of biodiversity and biogeography. Deep-Sea Res I 51:33–53

    Article  Google Scholar 

  • Gooday AJ, Cedhagen T, Kamenskaya OE, Cornelius N (2007) The biodiversity and biogeography of komokiaceans and other enigmatic foraminiferan-like protists in the deep Southern Ocean. Deep-Sea Res II 54:1691–1719

    Article  Google Scholar 

  • Gooday AJ, Nomaki H, Kitazato H (2008) Modern deep-sea benthic foraminifera: a brief review of their biodiversity and trophic diversity. In: Austin WEN, James RH (Eds) Biogeochemical Controls on Palaeoceanographic Environmental Proxies, Geological Society, London, Spec Publ 303: 97–119

  • Gooday AJ, Levin LA, Aranda da Silva A, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C (2009) Faunal responses to oxygen gradients on the Pakistan Margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Res II 56:488–502

    Article  CAS  Google Scholar 

  • Harloff J, Mackensen A (1997) Recent benthic foraminiferal associations and ecology of the Scotia Sea and Argentine Basin. Mar Micropaleontol 31:l–29

    Article  Google Scholar 

  • Herguera JC, Berger WH (1991) Paleoproductivity from benthic foraminifera abundance: glacial to post-glacial change in west-equatorial Pacific. Geology 19:1173–1176

    Article  Google Scholar 

  • Hessler RR, Sanders HL (1967) Faunal diversity in the deep sea. Deep-Sea Res 14:65–78

    Google Scholar 

  • Hori S (2001) Deep-sea benthic foraminiferal assemblages at three abyssal areas: comparison among the North Pacific, Equatorial Pacific and North Atlantic assemblages. Undergraduate thesis, Shizuoka University, Shizuoka

  • Hunt G, Cronin TM, Roy K (2005) Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecol Lett 8:739–747

    Article  Google Scholar 

  • Jorissen F (1999) Benthic foraminiferal microhabitats below the sediment-water interface. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer, Dordrecht, pp 161–179

    Google Scholar 

  • Jorissen FJ, de Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleont 26:3–15

    Article  Google Scholar 

  • Jorissen F, Wittling I, Peypouquet JP, Rabouille C, Relexans JC (1998) Live benthic foraminiferal faunas off Cap Blanc, NW Africa: community structure and microhabitats. Deep-Sea Res I 45:2157–2188

    Article  CAS  Google Scholar 

  • Kurbjeweit F, Schmiedl G, Schiebel R, Hemleben Ch, Pfannkuche O, Wallmann K, Schäfer P (2000) Distribution, biomass and diversity of benthic foraminifera in relation to sediment geochemistry in the Arabian Sea. Deep-Sea Res II 47:2913–2955

    Article  Google Scholar 

  • Lagoe MB (1976) Species diversity of deep-sea benthic Foraminifera from the central Arctic Ocean. Bull Geol Soc Am 87:1678–1683

    Article  Google Scholar 

  • Lambshead PJD, Brown CJ, Ferrero TJ, Mitchell NJ, Smith CR, Hawkins LE, Tietjen J (2002) Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: a test from the central equatorial Pacific. Mar Ecol Prog Ser 236:129–135

    Article  Google Scholar 

  • Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, Østerås M, Farnelli L, Pawlowski J (2011) Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci USA. doi:10.1073/pnas.1018426108

  • Leduc D, Rowden AA, Probert PK, Pilditch CA, Nodder SD, Vanreusel A, Duineveld GCA, Witbaard R (2011) Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity. Deep-Sea Res I:. doi:10.1016/j.dsr.2011.10.009

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol 41:1–45

    Google Scholar 

  • Levin LA, Gage JD (1998) Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Res II 45:129–163

    Article  CAS  Google Scholar 

  • Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Syst Ecol 32:51–93

    Article  Google Scholar 

  • Lipps JH, Valentine JW (1970) The role of foraminifera in the trophic structure of marine communities. Lethaia 3:279–286

    Article  Google Scholar 

  • Lohmann GP (1978) Abyssal benthonic foraminifera as hydrographic indicators in the western South Atlantic Ocean. J Foram Res 8:6–34

    Article  Google Scholar 

  • Longhurst AR (2006) Ecological Geography of the Sea, 2nd edn. Academic, San Diego

    Google Scholar 

  • Loubere P, Fariduddin M (1999) Benthic Foraminifera and the flux of organic carbon to the seabed. In: BK Sen Gupta (Ed) Modern Foraminifera. Kluwer, Dordrecht, pp 181–199

  • Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ (2007) Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J Geophys Res 112(C10):C10011

    Article  Google Scholar 

  • Lutze GF (1980) Depth distribution of benthic foraminifera on the continental margin off NW Africa. Meteor-Forschung C32:31–80

    Google Scholar 

  • Lutze GF, Coulbourne WT (1984) Recent benthic foraminifera from the continental margin of northwest Africa: community structure and distribution. Mar Micropaleontol 8:361–401

    Article  Google Scholar 

  • Mackensen A, Grobe H, Kuhn G, Fütterer DK (1990) Benthic foraminiferal assemblages from the eastern Weddell Sea between 68 and 73°S: Distribution, ecology and fossilization potential. Mar Micropaleontol 16:241–283

    Article  Google Scholar 

  • Mackensen A, Fütterer DK, Grobe H, Schmiedl G (1993) Benthic foraminiferal assemblages from the eastern South Atlantic Polar Front region between 35° and 57°S: distribution, ecology and fossilization potential. Mar Micropaleontol 22:33–69

    Article  Google Scholar 

  • Mackensen A, Schmiedl G, Harloff J, Giese M (1995) Deep-sea foraminifera in the South Atlantic Ocean: ecology and assemblage generation. Micropaleonotology 41:342–358

    Article  Google Scholar 

  • Magurran AE (2004) Measuring Ecological Diversity. Blackwell, Oxford

    Google Scholar 

  • Manly BFJ (1997) Randomization. Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, London

    Google Scholar 

  • Merrett NR (1987) A zone of faunal change in assemblages of abyssal demersal fish in the eastern North Atlantic: a response to seasonality in production? Biol Ocean 5:137–151

    Google Scholar 

  • Murray JW (2000) The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera. J Foramin Res 30:244–245

    Article  Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nozawa F, Kitazato H, Tsuchiya M, Gooday AJ (2006) ‘Live’ benthic foraminifera at an abyssal site in the equatorial Pacific nodule province: abundance, diversity and taxonomic composition. Deep-Sea Res I 51:1406–1422

    Google Scholar 

  • Ohkawara N (2006) Deep-sea benthic foraminiferal faunas in the central Equatorial Pacific. Dissertation, Yokohama University, Japan

  • Pawlowski J, Lecroq B (2010) Short rDNA Barcodes for Species Identification in Foraminifera. J Eukaryot Microbiol 57:197–205

    Article  PubMed  CAS  Google Scholar 

  • Phleger FB (1960) Ecology and Distribution of Recent Foraminifera. John Hopkins University Press, Baltimore

    Google Scholar 

  • Phleger FB, Soutar A (1973) Production of benthic foraminifera in three east Pacific oxygen minima. Micropaleontology 19:110–115

    Article  Google Scholar 

  • Phleger FB, Parker FL, Peirson JF (1953) North Atlantic foraminifera. Reports Swedish Deep-Sea Expedition 7: 1–122

  • Rex MA (1973) Deep-sea species diversity: decreased gastropod diversity at abyssal depths. Science 181:1051–1053

    Google Scholar 

  • Rex MA (1981) Community structure in the deep-sea benthos.Annu Rev Ecol Syst 12:331–353

    Google Scholar 

  • Rex MA (1983) Geographic patterns of species diversity in the deep-sea benthos. In: Rowe GT (ed) Deep sea biology, vol 8, The Sea. Wiley, New York, pp 453–472

  • Rex MA, Etter RJ (2010) Deep-Sea Biodiversity: Pattern and Scale. Harvard University Press, Harvard.

  • Rex MA, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636–639

    Article  Google Scholar 

  • Rex MA, Stuart CT, Coyne G (2000) Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proc Natl Acad Sci USA 97:4082–4085

    Google Scholar 

  • Rex MA, Crame JA, Stuart CT, Clarke A (2005) Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity. Ecology 86:2288–2297

    Article  Google Scholar 

  • Saidova KhM (1975) Benthonic foraminifera of the Pacific Ocean. Academy of Sciences of the USSR, P.P. Shirshov Institute of Oceanology, Moscow, pp 1–875

  • Saidova KhM (1981) Recent foraminiferal communities of the Pacific Abyssal Plains. Oceanology 21:259–262

    Google Scholar 

  • Saidova KhM (2000) Facial variability of benthic foraminiferal communities of the open regions of the ocean. Oceanology 40:66–72

    Google Scholar 

  • Schmiedl G, Mackensen A, Müller PJ (1997) Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses. Mar Micropaleontol 32:239–287

    Article  Google Scholar 

  • Schmiedl G, de Bovée F, Buscail R, Charrière B, Hemleben C, Medernach L, Picon P (2000) Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Mar Micropalaeontol 40:167–188

    Article  Google Scholar 

  • Schnitker D (1974) West Atlantic abyssal circulation during the past 120,000 years. Nature 47:385–387

    Article  Google Scholar 

  • Schnitker D (1980) Quaternary deep-sea benthic foraminifera and bottom water masses. Annu Rev Earth Planet Sci 1980:343–370

    Article  Google Scholar 

  • Schőnfeld J (2002) A new benthic foraminiferal proxy for near-bottom current velocities in the Gulf of Cadiz, northeastern Atlantic Ocean. Deep-Sea Res I 49:1853–1875

    Article  Google Scholar 

  • Sen Gupta BK, Lee RF, May MS (1981) Upwelling and an unusual assemblage of benthic foraminifera on the northern Florida continental slope. J Paleontol 55:853–857

    Google Scholar 

  • Sheldon AL (1969) Equitability indices: dependence on species count. Ecology 50:466–467

    Article  Google Scholar 

  • Shirayama Y (1984) The abundance of deep-sea meiobenthos in the Western Pacific in relation to environmental factors. Oceanol Acta 7:113–121

    Google Scholar 

  • Siegel S, Castellan NJ (1988) Non-parametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Smith PB (1973) Foraminifera of the North Pacific Ocean. US Geological Survey Professional Paper 766:1–27

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbiz P (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528

    Article  PubMed  Google Scholar 

  • Snelgrove PVR, Smith CR (2002) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanogr Mar Biol 40:311–342

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New York

    Google Scholar 

  • Steel RG, Torrie JH (1981) Principles and procedures of statistics, A biometrical approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Streeter SS (1973) Bottom water and benthonic foraminifera in the North Atlantic - glacial-interglacial contrasts. Quat Res 3:131–141

    Article  Google Scholar 

  • Stuart CT, Rex MA, Etter RJ (2003) Large-scale spatial and temporal patterns of deep-sea benthic species diversity. In: Tyler PA (ed) Ecosystems of the World: ecosystems of deep oceans. Elsevier, New York, pp 295–311

  • Suess E (1980) Particulate organic carbon flux in the oceans - surface productivity and oxygen utilization. Nature 288:260–263

    Article  CAS  Google Scholar 

  • Sun X, Corliss BH, Brown CW, Showers WJ (2006) The effect of primary productivity and seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic. Deep-Sea Res I 53:28–47

    Article  Google Scholar 

  • Tendal OS, Hessler RR (1977) An introduction to the biology and systematics of Komokiacea. Galathea Report 14:165–194

  • Thomas E, Gooday AJ (1996) Cenozoic deep-sea benthic foraminifera: tracers for changes in oceanic productivity. Geology 24:355–358

    Article  CAS  Google Scholar 

  • Timm S (1992) Rezente Tiefsee-Benthosforaminiferen aus Oberflächen-sedimenten des Golfes von Guinea (Westafrika) -Taxonomie, Verbreitung, Ökologie und Korngrössenfrakionen. Berichte - Geol.-Paläont. Inst. Univ. Kiel, No. 59

  • Todo Y (2003) Deep-sea benthic foraminiferal fauna that dwell at abyssal depths in the Pacific Ocean. Dissertation, Shizuoka University, Japan

  • Veillette J, Sarrazin J, Gooday AJ, Galéron J, Caprais J-C, Vangriesheim A, Juniper SK (2007) Ferromanganese nodule fauna in the equatorial north Pacific ocean: species richness, faunal cover and spatial distribution. Deep-Sea Res I 54:1912–1935

    Article  Google Scholar 

  • Wolff GA, Billett DSM, Bett BJ, Holtvoeth J, FitzGeorge-Balfour T, Fisher EH, Cross I, Shannon R, Salter I, Boorman B, King NJ, Jamieson A, Chaillan F (2011) The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean. PLoS One 6(6):e20697. doi:10.1371/journal.pone.0020697

    Article  PubMed  CAS  Google Scholar 

  • Wollenburg JE, Kuhnt W (2000) The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean. Mar Micropaleontol 40:189–231

    Article  Google Scholar 

  • Wollenburg J, Mackensen A (1998) Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Mar Micropaleontol 34:153–185

    Article  Google Scholar 

  • Wollenburg JE, Mackensen A, Kuhnt W (2007) Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24.000 years. Palaeogeogr Palaeoclimatol Palaeoecol 255:195–222

    Article  Google Scholar 

  • Yasuhara M, Hunt G, Cronin TM, Hokanishi N, Kawahata H, Tsujimoto A, Ishitake M (2012) Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38:162–179

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Craig Smith for inviting one of us (A.J.G.) to participate in the CeDAMar Synthesis Workshop on Impacts of Productivity Gradients on Biodiversity and Ecosystem Function in the Abyss (Friday Harbor, 11–15 May 2009). We are grateful to our colleagues Dr Stephanie Henson, Dr Veerle Huvenne and Ms Elizabeth Ross for implementing the VGPM primary production model and allowing us to access its output. We thank three anonymous reviewers, and Craig Smith, for many helpful comments and suggestions that substantially improved the paper. This paper is a contribution to the Oceans 2025 project of the UK Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Gooday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gooday, A.J., Bett, B.J., Jones, D.O.B. et al. The influence of productivity on abyssal foraminiferal biodiversity. Mar Biodiv 42, 415–431 (2012). https://doi.org/10.1007/s12526-012-0121-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-012-0121-8

Keywords

Navigation