Marine Biodiversity

, Volume 40, Issue 2, pp 123–130

Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming

  • Jan Marcin Weslawski
  • Jozef WiktorJr.
  • Lech Kotwicki
Original paper


Rocky littoral macroorganisms that live between the high and low water marks were sampled in the summers of 1988 and 2007–2008 in Hornsund Fjord and along the adjacent Sorkappland coast (76–77°N). The same sampling stations and methodology were used to collect the samples. Over the last 20 years, the study area has been exposed to well-documented increases in air and sea temperature, increased windiness, and marked decreases in both the duration and extent of sea ice cover. The study revealed a twofold increase in the number of species found intertidally, a threefold increase in the biomass of macrophytes, and an upward shift in algae occurrence on the coast. Subarctic boreal species occupied new areas, while arctic species retreated. There were no species new to the area in 2007–2008, and all newcomers to the intertidal zone were noted in 1988 in the sublittoral zone. The relative stability of intertidal flora and fauna after 20 years is explained by the fact that the warm Atlantic waters (the main warming agent) are distant from the Sorkappland coast. Current observations show a marked change in the coastal belt biocenosis.


Climate change Arctic Littoral Benthos 


  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, New YorkGoogle Scholar
  2. Ambrose WG, Leinaas HP (1989) Intertidal soft bottom communities on the west coast of Spitsbergen. Polar Biol 8:393–395CrossRefGoogle Scholar
  3. Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussel Mytilus edulis in Svalbard after 1000 years of absence. Mar Ecol Prog Ser 303:167–175CrossRefGoogle Scholar
  4. Berge J, Renaud PE, Eiane K, Gulliksen B, Cottier FR, Varpe O, Brattegard T (2009) Changes in the decapod fauna of an Arctic fjord during the last 100 years (1908–2007). Polar Biol 32:953–961CrossRefGoogle Scholar
  5. Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980-2003). J Mar Syst 63:35–48CrossRefGoogle Scholar
  6. Blacker RW (1957) Benthic animals as indicators of hydrographic conditions and climate change in Svalbard waters. Fish Invest Ser 2:1–59Google Scholar
  7. Bucas M, Daunys D, Olenin S (2007) Overgrowth patterns of the red algae Furcellaria umbilicaris at an exposed Baltic sea coast. The result of a remote underwater video data analysis Estuar Coast Shelf Sci 75:308–316Google Scholar
  8. Buchholz F, Buchholz C, Węsławski JM (2009) Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol 33:101–113CrossRefGoogle Scholar
  9. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fisher 10:235–251CrossRefGoogle Scholar
  10. Dye AH (1998) Dynamics of rocky intertidal communities: analyses of long time series from South African shores. Estuar Coast Shelf Sci 46:287–305CrossRefGoogle Scholar
  11. Ellis DV, Wilce RT (1961) Arctic and Subarctic examples of intertidal zonation. Arctic 14:224–235Google Scholar
  12. Espinosa F, Guerra-Garcia JM (2005) Algae, macrofaunal assemblages and temperature: a quantitative approach to intertidal ecosystems of Iceland. Helgoland Mar Res 59:273–285CrossRefGoogle Scholar
  13. Florczyk I, Latała A (1989) The phytobenthos of the Hornsund fjord, SW Spitsbergen. Polar Res 7:29–41CrossRefGoogle Scholar
  14. Guenette CC, Sergy GA, Owens EH et al (2003) Experimental design of the Svalbard shoreline field trials. Spill Sci Techn Bull 8:245–256CrossRefGoogle Scholar
  15. Hansen JR, Haugen I (1989) Some observations of intertidal communities on Spitsbergen (79°N), Norwegian Arctic. Polar Res 7:23–27CrossRefGoogle Scholar
  16. Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Res 37:123–133CrossRefGoogle Scholar
  17. Herbert RJH, Southward AJ, Clarke RT, Sheader M, Hawkins SJ (2009) Persistent border: an analysis of the geographic boundary of an intertidal species. Mar Ecol Prog Ser 379:135–150CrossRefGoogle Scholar
  18. Hop H, Falk Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Soreide J (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231CrossRefGoogle Scholar
  19. Ingolfsson A (1996) The distribution of intertidal macrofauna on the coasts of Iceland in relation to temperature. Sarsia 81:29–44Google Scholar
  20. Jones SJ, Mieszkowska N, Wethey DS (2009) Linking thermal tolerances and biogeography: Mytilus edulis (L.) at its southern limit on the east coast of the United States. Biol Bull 1:73–85Google Scholar
  21. Karnovsky NJ, Kwasniewski S, Weslawski JM, Walkusz W, Beszczynska-Möller A (2003) Foraging behavior of little auks in a heterogeneous environment. Mar Ecol Prog Ser 253:289–303CrossRefGoogle Scholar
  22. Kedra M, Wlodarska-Kowalczuk M, Weslawski JM (2009) Decadal change in macrobenthic soft-bottom community structure in a high Arctic fjord (Kongsfjorden, Svalbard). Polar Biol 33:1–11CrossRefGoogle Scholar
  23. Marsz A, Styszynska A (eds) (2007) Klimat rejonu Polskiej Stacji Polarnej w Hornundzie (Climate of the Polish Polar Station in Hornsund). Wyd, AM w Gdyni, ISBN 978-83-7421-0287 (in Polish)Google Scholar
  24. Moe KA, Skeie GM, Brude OW, Lovas CM, Nedrebo M, Węsławski JM (2000) The Svalbard intertidal zone: a concept for the use of GIS in applied oil sensivity, vulnerability and impact analyses. Spill Sci Techn Bull 6:187–206CrossRefGoogle Scholar
  25. Poloczanska ES, Hawkins SJ, Southward AJ, Burrows MT (2008) Modelling the response of populations of competing species to climate change. Ecology 89:3138–3149CrossRefGoogle Scholar
  26. Rachold V, Are FE, Atkinson DE, Cherkasov G, Solomon SM (2004) Arctic coastal dynamics – an introduction. Geoph Mar Lett 25:63–68CrossRefGoogle Scholar
  27. Reichert K, Buchholz F (2006) Changes in the macrozoobenthos of the intertidal zone at Helgoland (German Bight, North Sea): a survey of 1984 repeated in 2002. Helgoland Mar Res 60:213–223CrossRefGoogle Scholar
  28. Renaud PE, Włodarska-Kowalczuk M, Trannum H, Holte B, Węsławski JM, Cochrane S, Dahle S, Gulliksen B (2007) Multidecadal stability of benthic community structure in a high-Arctic glacial fjord (van Mijenfjord, Spitsbergen). Polar Biol 30:295–305CrossRefGoogle Scholar
  29. Stephenson TA, Stephenson A (1949) The universal features of zonation between tide-marks on rocky coasts. Ecology 37:289–305CrossRefGoogle Scholar
  30. Svendsen P (1959) The algal vegetation of Spitsbergen. Norsk Polarinst Skr 116Google Scholar
  31. Swerpel S (1985) The Hornsund fjord: water masses. Pol Polar Res 4:475–469Google Scholar
  32. Szymelfenig M, Kwaśniewski S, Węsławski JM (1995) Intertidal zone of Svalbard 2. Meiobenthos density and occurrence Polar Biol 15:137–141Google Scholar
  33. Thrush SF, Hewitt JE, Cummings VJ, Ellis JI, Hatton C, Lohrer A, Norkko A (2004) Muddy waters: elevating sediment input to coastal and estuarine habitats. Front Ecol Env 2:299–306CrossRefGoogle Scholar
  34. Walczowski W, Piechura J (2006) New evidence of warming propagating toward the Arctic Ocean. Geoph Res Lett 33: L1 2601Google Scholar
  35. Walczowski W, Piechura J (2007) Pathways of the Greenland Sea warming. Geoph Res Lett 34: L1 0608Google Scholar
  36. Weslawski JM (1994) Genus Gammarus (Crustacea, Amphipoda) from Svalbard and Franz Josef Land. Distribution and density. Sarsia 79:145–150Google Scholar
  37. Weslawski JM (2004) The marine fauna of Arctic islands as bioindicators. In: S. Skreslet (ed) Jan Mayen Island in scientific focus. Kluver, Dordrecht, pp 173–180Google Scholar
  38. Weslawski JM, Adamski P (1988) Cold and warm years in South Spitsbergen coastal marine ecosystem. Pol Polar Res 8:95–106Google Scholar
  39. Weslawski JM, Kwaśniewski S, Wiktor J, Zajączkowski M (1993a) Observations on the fast ice biota in the fjords of Spitsbergen. Pol Polar Res 14:331–343Google Scholar
  40. Weslawski JM, Wiktor J, Zajaczkowski M, Swerpel S (1993b) Intertidal zone of Svalbard. 1 Macroorganisms distribution and biomass. Polar Biol 13:73–108CrossRefGoogle Scholar
  41. Weslawski JM, Koszteyn J, Zajaczkowski M, Wiktor J, Kwaśniewski S (1995) Fresh water in Svalbard fjord ecosystems. In: Skjoldal HR, Hopkins CC, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, New York, pp 229–241Google Scholar
  42. Weslawski JM, Wiktor J, Zajaczkowski M, Futsaeter G, Moe KA (1997a) Vulnerability assesment of Svalbard intertidal zone for oil spills. Estuar Coast Shelf Sci 44: Supplement A: 33–41Google Scholar
  43. Weslawski JM, Zajaczkowski M, Wiktor J, Szymelfenig M (1997b) Intertidal zone of Svalbard. 3 Littoral of a subarctic, oceanic island: Bjornoya. Polar Biol 18:45–52.Google Scholar
  44. Ziaja W (2001) Glacial recession in Sorkappland and Central Nordenskioldland, Spitsbergen, Svalbard, during the 20th century. Arct Antarct Alp Res 33:36–41CrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2010

Authors and Affiliations

  • Jan Marcin Weslawski
    • 1
  • Jozef WiktorJr.
    • 1
  • Lech Kotwicki
    • 1
  1. 1.Institute of OceanologyPolish Academy of SciencesSopotPoland

Personalised recommendations