Marine Biodiversity

, 39:27 | Cite as

Biodiversity of an unknown Antarctic Sea: assessing isopod richness and abundance in the first benthic survey of the Amundsen continental shelf

  • Stefanie KaiserEmail author
  • David K. A. Barnes
  • Chester J. Sands
  • Angelika Brandt
Original Paper


Concerted efforts are being made to understand the current and past processes that have shaped Antarctic biodiversity. However, high rates of new species discoveries, sampling patchiness and bias make estimation of biodiversity there difficult. Antarctic continental shelf benthos is better studied in the Ross, Weddell and Scotia seas, whilst the Amundsen Sea has remained biologically unexplored largely because of severe ice conditions year-round. Here we report results from examination of the first benthic biological samples taken from the Amundsen Sea. We compare relative abundance, taxonomic richness and faunal composition of isopod families, and genera and species within two example families (i.e. Desmosomatidae and Nannoniscidae) from the Amundsen Sea with complementary sampling from the Scotia Sea. Benthic samples were taken from inner and outer Pine Island Bay (eastern Amundsen Sea) sites using an epibenthic sledge at 500 m. Similar samples were also collected from 15 Scotia arc sites at 160- to 500-m depths. The relative abundance of isopods in the Amundsen Sea samples was high and surprisingly less variable than across samples in the Scotia Sea. The abundance structure of isopods at family level was compared across different Antarctic seas. We found that in the Amundsen, Scotia and Ross Seas two families dominated abundance. In contrast, isopod abundance reported in the literature from Weddell Sea samples was much more evenly distributed across families. The Amundsen continental shelf isopod fauna appears to be rich, with 96% of individuals belonging to currently undescribed species. Most of the genera have either been described or found elsewhere, but for many of these genera it is the first time they have been recorded away from the Antarctic continental slope or deep sea. The Amundsen Sea assemblages differed greatly from the Scotia Sea sites in terms of both composition and (species and generic) richness. This was largely due to high consistency between samples compared with the highly variable Scotia Sea samples. Thorough biological analyses implementing well-structured geographic sampling regimes and the application of phylogeographic analyses on a variety of taxa are required to further explore the geographic structure of biodiversity and the evolutionary history of the Amundsen Sea.


Antarctic Pine Island Bay Scotia Sea Macrobenthos Accumulation curves Dominance structure BIOPEARL 



We are greatful to Drs. K. Linse and P. Enderlein for organising and running the cruise, and to the officers and crew of RRS James Clark Ross, whose patience, accuracy and timing have made this work possible. Many thanks to M. Choudhury for making data available, and to P. Rothery for statistical support and to H.J. Griffiths for his help editing the figures. P. Fretwell kindly provided the maps. Drs. W.P. Goodall-Copestake and C.D. Hillenbrand are thanked for helpful discussions. We are grateful to three anonymous referees for valuable comments on an earlier draft of this manuscript. S. Kaiser acknowledges grants of a SCAR fellowship, the German Science foundation (DFG, under contract no. Br 1121/26-4) and the German Academic Exchange Service (DAAD). This study is a contribution to CAML and the SCAR-EBA programme.


  1. Arntz WE, Thatje S, Linse K et al (2006) Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biol 29:83–96. doi: 10.1007/s00300-005-0047-8 CrossRefGoogle Scholar
  2. Aronson RB, Blake DB (2001) Global climate change and the origin of modern benthic communities in Antarctica. Am Zool 41:27–39. doi: 10.1668/0003-1569(2001)041[0027:GCCATO]2.0.CO;2 CrossRefGoogle Scholar
  3. Arrigo KR, van Diejken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems.. J Geophys Res 108(C8):27–1–15CrossRefGoogle Scholar
  4. Balmford A, Green MJB, Murray MG (1996) Using higher-taxon richness as a surrogate for species richness: I. Regional tests. Proc R Soc Lond B Biol Sci 263(1375):1267–1274. doi: 10.1098/rspb.1996.0186 CrossRefGoogle Scholar
  5. Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth Sci Rev 55:1–39. doi: 10.1016/S0012-8252(01)00055-1 CrossRefGoogle Scholar
  6. Barnes DKA (2008) A benthic richness hotspot in the Southern Ocean: slope and shelf cryptic benthos of Shag Rocks. Antarct Sci 20:263–270Google Scholar
  7. Barnes DKA, DeGrave S (2001) Ecological biogeography of southern polar encrusting faunas. J Biogeogr 28:359–365. doi: 10.1046/j.1365-2699.2001.00562.x CrossRefGoogle Scholar
  8. Barnes DKA, Kaiser S, Griffiths HJ et al (2008) Marine, intertidal, fresh-water and terrestrial biodiversity of an isolated polar archipelago. J Biogeogr. doi: 10.1111/j.1365-2699.2008.02030.x
  9. Brandt A (1991) Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). Ber Polarforsch 98:1–240Google Scholar
  10. Brandt A (2004) Abundance, diversity and community patterns of Isopoda (Crustacea) in the Weddell Sea and Bransfield Strait. South Ocean. Antarc Sci 16(1):5–10Google Scholar
  11. Brandt A, Brix S, Brökeland W, Choudhury M et al (2007a) Deep-sea isopod biodiversity, distribution and endemism in the Atlantic sector of the Southern Ocean—results from the ANDEEP I-III expeditions. Deep Sea Res Part II Top Stud Oceanogr 54:1760–1775. doi: 10.1016/j.dsr2.2007.07.015 CrossRefGoogle Scholar
  12. Brandt A, Gooday AJ, Brandao SN et al (2007b) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447(7142):307–311. doi: 10.1038/nature05827 PubMedCrossRefGoogle Scholar
  13. Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. J Mar Technol Soc 39(2):10–19CrossRefGoogle Scholar
  14. Carmack EC (1977) Water characteristics of the Southern Ocean south of the Polar Front. In: Angel M (ed) A voyage of discovery. Pergamon Press, Oxford, pp 15–41Google Scholar
  15. Castello J (2004) Isopods (Crustacea, Isopoda) from the Spanish “Bentart-94/95” expeditions to the South Shetland Islands (sub-Antarctic). Polar Biol 28:1–14Google Scholar
  16. Choudhury M, Brandt A (2007) Composition and dirtsibution of benthic isopod (Crustacea, Malacostraca) families off the Victoria-Land Coast (Ross Sea, Antarctica). Polar Biol 30:1431–1437. doi: 10.1007/s00300-007-0304-0 CrossRefGoogle Scholar
  17. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114Google Scholar
  18. Clarke A, Griffiths HJ, Linse K et al (2008) How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers Distrib 13:620–632CrossRefGoogle Scholar
  19. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  20. Cummings V, Thrush S, Norkko A et al (2006) Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarct Sci 18(4):633–644. doi: 10.1017/S0954102006000666 CrossRefGoogle Scholar
  21. De Broyer C, Danis B (2008). SCAR-MarBIN: The Antarctic Marine Biodiversity Information Network. World Wide Web electronic publication. Available online at Accessed 15 Sep 2008
  22. Dowdeswell JA, Bamber JL (2007) Keel depth of modern Antarctic icebergs and implications for sea-floor scouring in the geological record. Mar Geol 243:120–131. doi: 10.1016/j.margeo.2007.04.008 CrossRefGoogle Scholar
  23. Grotov AS, Nechaev DA, Panteleev GG et al (1998) Large-scale circulation in the Bellingshausen and Amundsen seas as a variational inverse of climatological Data. J Geophys Res 103(C6):13011–13022. doi: 10.1029/98JC00449 CrossRefGoogle Scholar
  24. Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of Southern Ocean benthos. J Biogeogr 36:162–177. doi: 10.1111/j.1365-2699.2008.01979.x CrossRefGoogle Scholar
  25. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83. doi: 10.3354/meps253077 CrossRefGoogle Scholar
  26. Gutt J, Starmans A (2003) Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biol 26:276–278Google Scholar
  27. Gutt J, Sirenko BI, Smirnov IS et al (2004) How many macrozoobenthic species might inhabit the Antarctic shelf ? Antarct Sci 16:11–16. doi: 10.1017/S0954102004001750 CrossRefGoogle Scholar
  28. Held C, Wägele J-W (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Vavilfera: Chaetiliidae). Sci Mar 69(2):175–181. doi: 10.3989/scimar.2005.69s2175 CrossRefGoogle Scholar
  29. Hessler RR, Strömberg JO (1989) Behavior of janiroidean isopods (Asellota), with special reference to deep-sea genera. Sarsia 74:145–159Google Scholar
  30. Hilbig B (2004) Polychaetes of the deep Weddell and Scotia Seas-composition and zoogeographical links. Deep Sea Res Part II Top Stud Oceanogr 51:1817–1825. doi: 10.1016/j.dsr2.2004.07.015 CrossRefGoogle Scholar
  31. Jacobs SS, Hellmer HH, Jenkins A (1996) Antarctic ice sheet melting in the Southeast Pacific. Geophys Res Lett 23(9):957–960. doi: 10.1029/96GL00723 CrossRefGoogle Scholar
  32. Kaiser S, Barnes DKA, Brandt A (2007) Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep Sea Res Part II Top Stud Oceanogr 54:1776–1789. doi: 10.1016/j.dsr2.2007.07.006 CrossRefGoogle Scholar
  33. Kaiser S, Barnes DKA, Linse K, Brandt A (2008) Epibenthic macrofauna associated with the shelf and slope of a young and isolated Southern Ocean island. Antarct Sci 20:281–290. doi: 10.1017/S0954102008001107 CrossRefGoogle Scholar
  34. Knust R, Schröder A (1999) Effects of iceberg scouring on the fish community and the role of Trematomus spp as predator on the benthic community in early successional stages. Ber Polarforsch 301:22–25Google Scholar
  35. Linse K, Griffiths HJ, Barnes DKA et al (2006) Biodiversity and biogeography of Antarctic and Sub-Antarctic Mollusca. Deep Sea Res Part II Top Stud Oceanogr 53:985–1008. doi: 10.1016/j.dsr2.2006.05.003 CrossRefGoogle Scholar
  36. Linse K, Cope T, Lörz A-N et al (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30(8):1059–1068. doi: 10.1007/s00300-007-0265-3 CrossRefGoogle Scholar
  37. Lowe AL, Anderson JB (2002) Reconstruction of the West Antarctic ice sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent retreat history. Quat Sci Rev 21:1879–1897. doi: 10.1016/S0277-3791(02)00006-9 CrossRefGoogle Scholar
  38. Orsi AH, Whitworth HI, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap 42:641–673. doi: 10.1016/0967-0637(95)00021-W CrossRefGoogle Scholar
  39. Ragua-Gil JM, Gutt J, Clarke A et al (2004) Antarctic shallow-water megaepibenthos: shaped by circumpolar dispersion or local conditions ?. Mar Biol (Berl) 144:829–839. doi: 10.1007/s00227-003-1269-3 CrossRefGoogle Scholar
  40. Rehm P, Thatje S, Mühlenhardt-Siegel U et al (2007) Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea. Polar Biol 30(7):871–881. doi: 10.1007/s00300-006-0247-x CrossRefGoogle Scholar
  41. Saiz JI, García FJ, Manjón-Cabeza ME et al (2008) Community structure and spatial distribution of benthic fauna in the Bellingshausen Sea (West Antarctica). Polar Biol 31:735–743. doi: 10.1007/s00300-008-0414-3 CrossRefGoogle Scholar
  42. Schotte M, Kensley BF, Shilling S (1995 onwards) World list of marine, freshwater andterrestrial Crustacea Isopoda. National Museum of Natural History Smithsonian Institution, Washington D.C. Accessed 18 Nov 2008
  43. Smale DA, Barnes DKA, Fraser KPP et al (2008) Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island, Antarctica. Mar Ecol Prog Ser 355:85–94. doi: 10.3354/meps07311 CrossRefGoogle Scholar
  44. Smith KL Jr, Robison BH, Helly JJ et al (2007) Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea. Science 317:478–482. doi: 10.1126/science.1142834 PubMedCrossRefGoogle Scholar
  45. Stark JS, Riddle MJ, Simpson RD (2003) Human impacts in soft-sediment assemblages at Casey Station, East Antarctica: Spatial variation, taxonomic resolution and data transformation. Austral Ecol 28(3):287–304. doi: 10.1046/j.1442-9993.2003.01289.x CrossRefGoogle Scholar
  46. von Suhm R (1876) Preliminary report on crustacean during the cruise of A.M.S. Challenger in the Southern Seas. Proc R Soc Lond 24:1–591Google Scholar
  47. Svavarsson J, Strömberg JO, Brattegard T (1993) The deep-sea asellote (Isopoda, Crustacea) fauna of the northern seas: Species composition, distributional patterns and origin. J Biogeogr 20(5):537–555. doi: 10.2307/2845725 CrossRefGoogle Scholar
  48. Tavares M, de Melo GAS (2004) Discovery of the first known benthic invasive species in the Southern Ocean: the North Atlantic spider crab Hyas araneus found in the Antarctic Peninsula. Antarct Sci 16:129–131. doi: 10.1017/S0954102004001877 CrossRefGoogle Scholar
  49. Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31(1):79–92Google Scholar
  50. Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Antarctic ice sheet melting in the Southeast Pacific. Trends Ecol Evol 20:534–540. doi: 10.1016/j.tree.2005.07.010 Google Scholar
  51. Thoma M, Jenkins A, Holland D, Jacobs S (2008) Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf.. Geophys Res Lett 35:L18602. doi: 10.1029/2008GL034939 CrossRefGoogle Scholar
  52. Thomas DN (2008) Frozen Oceans. Natural History Museum, LondonGoogle Scholar
  53. Thomson MRA (2004) Geological and palaeenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep Sea Res Part II Top Stud Oceanogr 51:1467–1487. doi: 10.1016/j.dsr2.2004.06.021 CrossRefGoogle Scholar
  54. Vanhöffen E (1914) Die Isopoden der Deutschen Suedpolar-Expedition 1901-1903. Deutsche Südpolar-Expedition 1901-1903, 25 (Zoologie) 7:447-598Google Scholar
  55. Wilson NG, Hunter RL, Lockhart SJ et al (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol (Berl) 152:895–904. doi: 10.1007/s00227-007-0742-9 CrossRefGoogle Scholar
  56. Zimmermann A, Brandt A (1992) New results of the “EPOS” leg 3 cruise to Antarctica: Horizontal and vertical distribution of isopods (Crustacea) in the eastern Weddell Sea. Polar Biol 12(1):121–128. doi: 10.1007/BF00239972 CrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2009

Authors and Affiliations

  • Stefanie Kaiser
    • 1
    • 2
    Email author
  • David K. A. Barnes
    • 2
  • Chester J. Sands
    • 2
  • Angelika Brandt
    • 1
  1. 1.Biozentrum Grindel and Zoological MuseumUniversity of HamburgHamburgGermany
  2. 2.British Antarctic SurveyNERCCambridgeUK

Personalised recommendations