Skip to main content

Effect of an e-retailer’s product category and social media platform selection on perceived quality of e-retail products

Abstract

The growth of e-retail has expanded to a wide range of product categories. E-retailers compete in a multichannel environment using several social media platforms (SMPs) where their product category and use of SMPs affect potential consumers’ perception of product quality. Although studies have noted the potential of SMPs and differences between SMPs to support consumers in their information collection about products, the effect of different SMPs on consumers’ perception of product quality remains unexplored. Based on a literature review, this research suggests a theoretical framework of the knowledge acquisition process for new consumers evaluating the quality of diverse retail products. Using network and information theory, this study proposes hypotheses to assess the effect of diverse e-retailer’s product categories and different SMPs on consumer’s perception of e-retail product quality for consumers unfamiliar with e-retail brands. After testing these hypotheses using primary data, results partially validate the theoretical framework. Research findings help practitioners to organise their e-retail products display across diverse SMPs and provide insights for scholars of e-retailing and digital media striving to acquire consumers online.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alavi, M., & Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25, 107–136.

    Google Scholar 

  2. Albert, L. J., Aggarwal, N., & Hill, T. R. (2014). Influencing customer’s purchase intentions through firm participation in online consumer communities. Electronic Markets., 24, 285–295. https://doi.org/10.1007/s12525-014-0169-3 .

    Article  Google Scholar 

  3. Amit, R., & Zott, C. (2001). Value creation in E-business. Strategic Management Journal, 22, 493–520.

    Google Scholar 

  4. Bae, S., & Lee, T. (2011). Product type and consumers’ perception of online consumer reviews. Electronic Markets, 21, 255–266.

    Google Scholar 

  5. Baethge, C., Klier, J., & Klier, M. (2016). Social commerce—State-of-the-art and future research directions. Electronic Markets, 26, 269–290.

    Google Scholar 

  6. Bitter, S., & Grabner-Kräuter, S. (2016). Consequences of customer engagement behavior: When negative Facebook posts have positive effects. Electronic Markets, 26, 219–231.

    Google Scholar 

  7. Borgatti, S. P., & Halgin, D. S. (2011). On network theory. Organization Science, 22, 1168–1181.

    Google Scholar 

  8. Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13, 210–230.

    Google Scholar 

  9. Brin, S., & Page, L. (2012). Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks, 56, 3825–3833.

    Google Scholar 

  10. Carlson, J. R., & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of Management Journal, 42, 153–170.

    Google Scholar 

  11. Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via Amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29, 2156–2160.

    Google Scholar 

  12. Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77, 511–535.

    Google Scholar 

  13. Chun, J. W., & Lee, M. J. (2016). Increasing individuals’ involvement and WOM intention on social networking sites: Content matters! Computers in Human Behavior, 60, 223–232.

    Google Scholar 

  14. Coulter, R. A., Price, L. L., Feick, L., & Micu, C. (2005). The evolution of consumer knowledge and sources of information: Hungary in transition. Journal of the Academy of Marketing Science, 33, 604–619.

    Google Scholar 

  15. Culnan, M. J., McHugh, P. J. P. J., & Zubillaga, J. I. J. I. (2010). How large US companies can use twitter and other social media to gain business value. MIS Quarterly Executive, 9, 243–260.

    Google Scholar 

  16. Curty, R. G., & Zhang, P. (2013). Website features that gave rise to social commerce: A historical analysis. Electronic Commerce Research and Applications, 12, 260–279.

    Google Scholar 

  17. D’Urso, S. C., & Rains, S. A. (2008). Examining the scope of channel expansion: A test of channel expansion theory with new and traditional communication media. Management Communication Quarterly, 21, 486–507.

    Google Scholar 

  18. Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32, 554–571.

    Google Scholar 

  19. De Maeyer, P. (2012). Impact of online consumer reviews on sales and price strategies: A review and directions for future research. Journal of Product and Brand Management, 21, 132–139.

    Google Scholar 

  20. De Winter, J. (2013). Using the Student’s t -test with extremely small sample sizes. Practical Assessment, Research & Evaluation, 18, 1–12.

    Google Scholar 

  21. Dellarocas, C., Zhang, X. (Michael), & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive Marketing, 21, 23–45.

  22. Dennis, A. R., & Kinney, S. T. (1998). Testing media richness theory in the new media: The effects of cues, feedback, and task equivocality. Information Systems Research, 9, 256–274.

    Google Scholar 

  23. Dennis, A. R., Fuller, R. M., & Valacich, J. S. (2008). Media, tasks, and communication processes: A theory of media synchronicity. MIS Quarterly, 32, 575–600.

    Google Scholar 

  24. Duarte, P., e Silva, S. C., & Ferreira, M. B. (2018). How convenient is it? Delivering online shopping convenience to enhance customer satisfaction and encourage e-WOM. Journal of Retailing and Consumer Services, 44, 161–169.

    Google Scholar 

  25. Ekelund, R., Mixon, F., & Ressler, R. (1995). Advertising and information: An empirical study of search, experience and credence goods. Journal of Economic Studies, 22, 33–43.

    Google Scholar 

  26. eMarketer. (2018). Global B2C e-commerce sales 2012-2018. New York, NY 10004.

  27. Erden, Z., von Krogh, G., & Nonaka, I. (2008). The quality of group tacit knowledge. Journal of Strategic Information Systems, 17, 4–18.

    Google Scholar 

  28. Evans, J. R., & Mathur, A. (2005). The value of online surveys. Internet Research, 15, 195–219.

    Google Scholar 

  29. Felix, R., Rauschnabel, P. A., & Hinsch, C. (2017). Elements of strategic social media marketing: A holistic framework. Journal of Business Research, 70, 118–126.

    Google Scholar 

  30. Ferreras-Méndez, J. L., Newell, S., Fernández-Mesa, A., & Alegre, J. (2015). Depth and breadth of external knowledge search and performance: The mediating role of absorptive capacity. Industrial Marketing Management, 47, 86–97.

    Google Scholar 

  31. Floh, A., & Madlberger, M. (2013). The role of atmospheric cues in online impulse-buying behavior. Electronic Commerce Research and Applications, 12, 425–439.

    Google Scholar 

  32. Francis, J. E. (2009). Category-specific RECIPEs for internet retailing quality. Journal of Services Marketing, 23, 450–461.

    Google Scholar 

  33. Franke, G. R., Huhmann, B. A., & Mothersbaugh, D. L. (2004). Information content and consumer readership of print ads: A comparison of search and experience products. Marketing Science, 32, 20–31.

    Google Scholar 

  34. Frey, K. P., & Eagly, A. H. (1993). Vividness can undermine the persuasiveness of messages. Journal of Personality and Social Psychology, 65, 32–44.

    Google Scholar 

  35. Ganley, D. (2011). Social motivations to pay for services: Lessons from virtual communities. Electronic Markets., 21, 177–184. https://doi.org/10.1007/s12525-011-0067-x .

    Article  Google Scholar 

  36. Garg, R., Smith, M. D., & Telang, R. (2011). Measuring information diffusion in an online community. Journal of Management Information Systems, 28, 11–37.

    Google Scholar 

  37. Gartner. (2017). 2018 CIO Agenda: Retail industry insights.

  38. Gartner. (2018). Hype cycle for digital commerce.

  39. Garvin, D. A. (1984). What does “product quality” really mean. MIT Sloan Management Review, 26.

  40. Gastwirth, J. L., Gel, Y. R., & Miao, W. (2010). The impact of Levene’s test of equality of variances on statistical theory and practice. Statistical Science. https://doi.org/10.1214/09-sts301 .

  41. Gilsing, V., & Nooteboom, B. (2005). Density and strength of ties in innovation networks: An analysis of multimedia and biotechnology. European Management Review, 2, 179–197.

    Google Scholar 

  42. Girard, T., & Dion, P. (2010). Validating the search, experience, and credence product classification framework. Journal of Business Research, 63, 1079–1087.

    Google Scholar 

  43. Godden, D. R., & Baddeley, A. D. (1975). Context-dependent memory in two natural environments: On land and underwater. British Journal of Psychology, 66, 325–331.

    Google Scholar 

  44. Granovetter, M. S. (1983). The strength of weak ties: A network theory revisted. Sociological Theory, 1, 201–233.

    Google Scholar 

  45. Grütter, R., & Steurer, J. (2000). Supporting knowledge Management in an Online Community of healthcare professionals - the Evimed project. Electronic Markets, 10, 282–286.

    Google Scholar 

  46. Habibi, M. R., Laroche, M., & Richard, M.-O. (2014). Brand communities based in social media: How unique are they? Evidence from two exemplary brand communities. International Journal of Information Management, 34, 123–132.

    Google Scholar 

  47. Hahn, M., Park, S., Krishnamurthi, L., & Zoltners, A. A. (1994). Analysis of new product diffusion using a four-segment trial-repeat model. Marketing Science, 13, 224–247.

    Google Scholar 

  48. Hajli, N. (2015). Social commerce constructs and consumer’s intention to buy. International Journal of Information Management, 35, 183–191.

    Google Scholar 

  49. Hajli, N., Shanmugam, M., Papagiannidis, S., Zahay, D., & Richard, M. O. (2017). Branding co-creation with members of online brand communities. Journal of Business Research, 70, 136–144.

    Google Scholar 

  50. Heimbach, I., Gottschlich, J., & Hinz, O. (2015). The value of user’s Facebook profile data for product recommendation generation. Electronic Markets, 25, 125–138.

    Google Scholar 

  51. Herschel, R. T., Nemati, H., & Steiger, D. (2001). Tacit to explicit knowledge conversion: Knowledge exchange protocols. Journal of Knowledge Management, 5, 107–116.

    Google Scholar 

  52. Hill, S., & Ready-Campbell, N. (2011). Expert stock picker: The wisdom of (experts in) crowds. International Journal of Electronic Commerce, 15, 73–102.

    Google Scholar 

  53. Hoffman, D. L., & Fodor, M. (2010). Can you measure the ROI of your social media marketing? MIT Sloan Management Review, 52, 40–50.

    Google Scholar 

  54. Holden, C. J., Dennie, T., & Hicks, A. D. (2013). Assessing the reliability of the M5-120 on Amazon’s mechanical Turk. Computers in Human Behavior, 29, 1749–1754.

    Google Scholar 

  55. Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer brand engagement in social media: Conceptualization, scale development and validation. Journal of Interactive Marketing, 28, 149–165.

    Google Scholar 

  56. Holton, R. H. (1958). The distinction between convenience goods, shopping goods, and specialty goods. Journal of Marketing, 23, 53–56.

    Google Scholar 

  57. Hsieh, Y.-C., Roan, J., Pant, A., Hsieh, J.-K., Chen, W.-Y., Lee, M., & Chiu, H.-C. (2012). All for one but does one strategy work for all? Building consumer loyalty in multi-channel distribution. Managing Service Quality, 22, 310–335.

    Google Scholar 

  58. Hsu, Y.-H., Li, C. K., Li, C. M., & Liu, N. T. (2016). The effect of website quality features and cognitive absorption on social network site usage: A cross-national study. International Journal of Electronic Commerce Studies, 7, 156–188.

    Google Scholar 

  59. Hsu, P.-Y., Lei, H.-T., Huang, S.-H., Liao, T. H., Lo, Y.-C., & Lo, C.-C. (2019). Effects of sentiment on recommendations in social network. Electronic Markets, 29, 253–262.

    Google Scholar 

  60. Huang, P., Lurie, N. H., & Mitra, S. (2009). Searching for experience on the web: An empirical examination of consumer behavior for search and experience goods. Journal of Marketing, 73, 55–69.

    Google Scholar 

  61. Huber, J., & McCann, J. (1982). The impact of inferential beliefs on product evaluations. Journal of Marketing Research, 19, 324–333.

    Google Scholar 

  62. Im, I., Jun, J., Oh, W., & Jeong, S.-O. (2016). Deal-seeking versus brand-seeking: Search behaviors and purchase propensities in sponsored search platforms. MIS Quarterly, 40, 187–203.

    Google Scholar 

  63. Isaac, M. (2017). Mark Zuckerberg sees augmented reality ecosystem in Facebook. The New York Times, pp. 1–7.

  64. Jacoby, J., Olson, J. C., & Haddock, R. A. (1971). Price, brand name, and product composition characteristics as determinants of perceived quality. Journal of Applied Psychology, 55, 570–579.

    Google Scholar 

  65. Jang, S. C. (Shawn), & Namkung, Y. (2009). Perceived quality, emotions, and behavioral intentions: Application of an extended Mehrabian–Russell model to restaurants. Journal of Business Research, 62, 451–460.

  66. Jang, H., Olfman, L., Ko, I., Koh, J., & Kim, K. (2008). The influence of on-line brand community characteristics on community commitment and brand loyalty. International Journal of Electronic Commerce, 12, 57–80.

    Google Scholar 

  67. Jiang, Z., & Benbasat, I. (2007). Investigating the influence of the functional mechanisms of online product presentations. Information Systems Research. https://doi.org/10.1287/isre.1070.0124 .

  68. Jo, M.-S. (2007). Should a quality sub-brand be located before or after the parent brand? An application of composite concept theory. Marketing Science, 35, 184–196.

    Google Scholar 

  69. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53, 59–68.

    Google Scholar 

  70. Kees, J., Berry, C., Burton, S., & Sheehan, K. (2017). An analysis of data quality: Professional panels, student subject pools, and Amazon’s mechanical Turk. Journal of Advertising, 46, 141–155.

    Google Scholar 

  71. Keller, K. L. (2010). Brand equity Management in a Multichannel, multimedia retail environment. Journal of Interactive Marketing, 24, 58–70.

    Google Scholar 

  72. Keller, P. A., & Block, L. G. (1997). Vividness effects: A resource-matching perspective. Journal of Consumer Research, 24, 295–304.

    Google Scholar 

  73. Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54, 241–251.

    Google Scholar 

  74. King, R. C., Schilhavy, R. A. M., Chowa, C., & Chin, W. W. (2016). Do customers identify with our website? The effects of website identification on repeat purchase intention. International Journal of Electronic Commerce, 20, 319–354.

    Google Scholar 

  75. Korgaonkar, P., Silverblatt, R., & Girard, T. (2006). Online retailing, product classifications, and consumer preferences. Internet Research, 16, 267–288.

    Google Scholar 

  76. Krämer, N., Hoffmann, L., & Eimler, S. (2015). Not breaking bonds on Facebook-mixed-methods research on the influence of individuals’ need to belong on “unfriending” behavior on Facebook. International Journal of Developmental Sciences, 9, 61–74.

    Google Scholar 

  77. Langsrud, Ø. (2003). ANOVA for unbalanced data: Use type II instead of type III sums of squares. Statistics and Computing. https://doi.org/10.1023/A:1023260610025 .

  78. Laroche, M., Habibi, M. R., Richard, M.-O., & Sankaranarayanan, R. (2012). The effects of social media based brand communities on brand community markers, value creation practices, brand trust and brand loyalty. Computers in Human Behavior, 28, 1755–1767.

    Google Scholar 

  79. Laroche, M., Habibi, M. R., & Richard, M.-O. (2013). To be or not to be in social media: How brand loyalty is affected by social media? International Journal of Information Management, 33, 76–82.

    Google Scholar 

  80. Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of Trust in Effective Knowledge Transfer. Management Science, 50, 1477–1490.

    Google Scholar 

  81. Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49, 764–766.

    Google Scholar 

  82. Lim, B. C., & Chung, C. M. Y. (2011). The impact of word-of-mouth communication on attribute evaluation. Journal of Business Research, 64, 18–23.

    Google Scholar 

  83. Lin, J.-S., & Peña, J. (2011). Are you following me? A content analysis of TV networks’ brand communication on twitter. Journal of Interactive Advertising, 12, 17–29.

    Google Scholar 

  84. Lin, C.-Y., Liaw, S.-Y., Chen, C.-C., Pai, M.-Y., & Chen, Y.-M. (2017). A computer-based approach for analyzing consumer demands in electronic word-of-mouth. Electronic Markets, 27, 225–242.

    Google Scholar 

  85. Lin, H.-C., Bruning, P. F., & Swarna, H. (2018). Using online opinion leaders to promote the hedonic and utilitarian value of products and services. Business Horizons, 61, 431–442.

    Google Scholar 

  86. Liu, J., Li, C., Ji, Y. G., North, M., & Yang, F. (2017). Like it or not: The fortune 500’s Facebook strategies to generate users’ electronic word-of-mouth. Computers in Human Behavior, 73, 605–613.

    Google Scholar 

  87. Malhotra, N. (2008). Completion time and response order effects in web surveys. Public Opinion Quarterly, 72, 914–934.

    Google Scholar 

  88. Mamonov, S., Koufaris, M., & Benbunan-Fich, R. (2016). The role of the sense of Community in the Sustainability of social network sites. International Journal of Electronic Commerce, 20, 470–498.

    Google Scholar 

  89. Manthiou, A., Tang, L. R., & Bosselman, R. (2014). Reason and reaction: The dual route of the decision-making process on Facebook fan pages. Electronic Markets., 24, 297–308. https://doi.org/10.1007/s12525-014-0156-8 .

    Article  Google Scholar 

  90. Marsden, P. V. (1990). Network data and measurement. Annual Review of Sociology, 16, 435–463.

    Google Scholar 

  91. Mazaheri, E., Richard, M. O., Laroche, M., & Ueltschy, L. C. (2014). The influence of culture, emotions, intangibility, and atmospheric cues on online behavior. Journal of Business Research, 67, 253–259.

    Google Scholar 

  92. Mcfarland, L. A., & Ployhart, R. E. (2015). Social media : A contextual framework to guide research and practice. Journal of Applied Psychology, 100, 1653–1677.

    Google Scholar 

  93. McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. Psychological Methods, 11, 386–401.

    Google Scholar 

  94. Merle, A., Senecal, S., & St-Onge, A. (2012). Whether and how virtual try-on influences consumer responses to an apparel web site. International Journal of Electronic Commerce, 16, 41–64.

    Google Scholar 

  95. Mero, J. (2018). The effects of two-way communication and chat service usage on consumer attitudes in the e-commerce retailing sector. Electronic Markets, 28, 205–217.

    Google Scholar 

  96. Meyers, L. S., Gamst, G., & Guarino, A. J. (2013). Applied Multivariate Research. Design and Interpretation (second Edi). London, UK: Sage Publications, Inc..

    Google Scholar 

  97. Meyners, J., Barrot, C., Becker, J. U., & Goldenberg, J. (2017). The role of mere closeness: How geographic proximity affects social influence. Journal of Marketing, 81, 49–66.

    Google Scholar 

  98. Montgomery, J. M., & Cutler, J. (2013). Computerized adaptive testing for public opinion surveys. Political Analysis, 21, 172–192.

    Google Scholar 

  99. Moon, S., Bergey, P. K., & Iacobucci, D. (2010). Ratings, movie revenues, and viewer satisfaction. Journal of Marketing, 74, 108–121.

    Google Scholar 

  100. Moorthy, S., & Polley, D. E. (2010). Technological knowledge breadth and depth: Performance impacts. Journal of Knowledge Management, 14, 359–377.

    Google Scholar 

  101. Morris, S., Postlewaite, A., & Shin, H. S. (1995). Depth of knowledge and the effect of higher order uncertainty. Economic Theory, 6, 453–467.

    Google Scholar 

  102. Mort, G. S., & Rose, T. (2004). The effect of product type on value linkages in the means-end chain: Implications for theory and method. Journal of Consumer Behaviour, 3, 221–234.

    Google Scholar 

  103. Nakayama, M., Sutcliffe, N., & Wan, Y. (2010). Has the web transformed experience goods into search goods? Electronic Markets, 20, 251–262.

    Google Scholar 

  104. Nelson, P. (1970). Information and consumer behavior. Journal of Political Economy, 78, 311–329.

    Google Scholar 

  105. Nelson, P. (1974). Advertising as information. Journal of Political Economy, 82, 729–754.

    Google Scholar 

  106. Ngai, E. W. T., Tao, S. S. C., & Moon, K. K. L. (2015). Social media research: Theories, constructs, and conceptual frameworks. International Journal of Information Management, 35, 33–44.

    Google Scholar 

  107. Osborne, J. W. (2010). Improving your data transformations: Applying the box-cox transformation - practical assessment, research & evaluation. Practical Assessment, Research & Evaluation, 15, 1–9.

    Google Scholar 

  108. Pan, R. K., & Saramäki, J. (2011). The strength of strong ties in scientific collaboration networks. Physics Reports, 97, 6.

    Google Scholar 

  109. Phillips, J. M. (1998). Effects of realistic job previews on multiple organizational outcomes: A meta-analysis. Academy of Management Journal, 41, 673–690.

    Google Scholar 

  110. Piotrowicz, W., & Cuthbertson, R. (2014). Introduction to the special issue information Technology in Retail: Toward Omnichannel retailing. International Journal of Electronic Commerce, 18, 5–16.

    Google Scholar 

  111. Prabhu, J. C., Chandy, R. K., & Ellis, M. E. (2005). The impact of acquisitions on innovation: Poison pill, placebo, or tonic? Journal of Marketing, 69, 114–130.

    Google Scholar 

  112. Preston, C., & Colman, A. (2000). Optimal number of response categories in rating scales: Reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, 104, 1–15.

    Google Scholar 

  113. Roest, H., & Rindfleisch, A. (2010). The influence of quality cues and typicality cues on restaurant purchase intention. Journal of Retailing and Consumer Services, 17, 10–18.

    Google Scholar 

  114. Roy, R., & Naidoo, V. (2017). The impact of regulatory focus and word of mouth valence on search and experience attribute evaluation. European Journal of Marketing, 51, 1353–1373.

    Google Scholar 

  115. San José-Cabezudo, R., & Camarero-Izquierdo, C. (2012). Determinants of opening-forwarding e-mail messages. Journal of Advertising, 41, 97–112.

    Google Scholar 

  116. Schau, H. J., Muñiz, A. M., & Arnould, E. J. (2009). How Brand Community practices create value. Journal of Marketing, 73, 30–51.

    Google Scholar 

  117. Scholz, M., Franz, M., & Hinz, O. (2016). The ambiguous identifier clustering technique. Electronic Markets, 26, 143–156.

    Google Scholar 

  118. Shriver, S. K., Nair, H. S., & Hofstetter, R. (2013). Social ties and user-generated content: Evidence from an online social network. Management Science, 59, 1425–1443.

    Google Scholar 

  119. Smith, A. N., Fischer, E., & Yongjian, C. (2012). How does brand-related user-generated content differ across YouTube, Facebook, and twitter? Journal of Interactive Marketing, 26, 102–113.

    Google Scholar 

  120. Soucek, R., & Moser, K. (2010). Coping with information overload in email communication: Evaluation of a training intervention. Computers in Human Behavior, 26, 1458–1466.

    Google Scholar 

  121. Statista. (2018). eCommerce Digital Market Outlook, 2018. https://doi.org/10.1017/CBO9781107415324.004 .

  122. Steenkamp, J.-B. E. M. (1990). Conceptual model of the quality perception process. Journal of Business Research, 21, 309–333.

    Google Scholar 

  123. Stelzner, M. (2017). 2017 social media marketing industry report. California: Poway.

    Google Scholar 

  124. Steuer, J. (1992). Defining virtual reality: Dimensions determining Telepresence. Journal of Communication, 42, 73–93.

    Google Scholar 

  125. Sujan, M. (1985). Consumer knowledge: Effects on evaluation strategies mediating consumer judgments. Journal of Consumer Research, 12, 31–46.

    Google Scholar 

  126. Swani, K., & Milne, G. R. (2017). Evaluating Facebook brand content popularity for service versus goods offerings. Journal of Business Research, 79, 123–133.

    Google Scholar 

  127. Szybillo, G. J., & Jacoby, J. (1974). Intrinsic versus extrinsic cues as determinants of perceived product quality. Journal of Applied Psychology, 59, 74–78.

    Google Scholar 

  128. Venkitachalam, K., & Busch, P. (2012). Tacit knowledge: Review and possible research directions. Journal of Knowledge Management, 16, 357–372.

    Google Scholar 

  129. Vessey, I., & Galletta, D. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Research, 2, 63–84.

    Google Scholar 

  130. Wan, Y. (2015). The Matthew effect in social commerce. Electronic Markets, 25, 313–324.

    Google Scholar 

  131. Wan, Y., Nakayama, M., & Sutcliffe, N. (2012). The impact of age and shopping experiences on the classification of search, experience, and credence goods in online shopping. Information Systems and e-Business Management, 10, 135–148.

    Google Scholar 

  132. Wang, Y. J., Minor, M. S., & Wei, J. (2011). Aesthetics and the online shopping environment: Understanding consumer responses. Journal of Retailing, 87, 46–58.

    Google Scholar 

  133. Weathers, D., Sharma, S., & Wood, S. L. (2007). Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods. Journal of Retailing, 83, 393–401.

    Google Scholar 

  134. Weimann, G. (1983). The strength of weak conversational ties in the flow of information and influence. Social Networks, 5, 245–267.

    Google Scholar 

  135. Whiting, A., & Williams, D. (2013). Why people use social media: A uses and gratifications approach. Qualitative Market Research: An International Journal, 16, 362–369.

    Google Scholar 

  136. Zeithaml, V. A. (1988). Consumer perceptions of Price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52, 2–22.

    Google Scholar 

  137. Zhang, H., Zhao, L., & Gupta, S. (2018). The role of online product recommendations on customer decision making and loyalty in social shopping communities. International Journal of Information Management, 38, 150–166.

    Google Scholar 

  138. Zhao, J., Wu, J., Feng, X., Xiong, H., & Xu, K. (2011). Information propagation in online social networks: A tie-strength perspective. Knowledge and Information Systems, 32, 589–608.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Chirag Patel and Salvador Alvídrez, both provided very helpful feedback at different stages of this paper. This research was partly funded by the National Council of Science and Technology of Mexico (CONACYT) and Universidad de Monterrey UDEM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erik Ernesto Vazquez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Maria Madlberger

Appendix

Appendix

Table 3 Factor analysis
Table 4 Perceived quality of product category from E-retailer
Table 5 Control Items
Table 6 Descriptive statistics of the groups

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vazquez, E.E. Effect of an e-retailer’s product category and social media platform selection on perceived quality of e-retail products. Electron Markets 31, 139–157 (2021). https://doi.org/10.1007/s12525-020-00394-8

Download citation

Keywords

  • Information economics
  • Knowledge economy
  • E-commerce
  • Retailing
  • Category management
  • Digital marketing