Uncovering the business value of the internet of things in the energy domain – a review of smart energy business models

Abstract

In the energy industry, Internet of Things technologies emerge in the form of smart energy products, like smart meters, which are expected to reveal new business potentials and offer value for customers. Through attractive business models, such technologies can generate economic value. However, until now, the existing research has not comprehensively identified, analyzed, and grouped together smart energy business models. Moreover, the literature has not placed smart energy business models under the concept of smart products and services. To address this gap, we review the literature through an information systems lens and assess the status quo of research on smart energy business models, identify relevant business model types, and propose a research agenda for future research on Internet of Things-based business models in the energy sector.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    https://www.powerpeers.nl/

  2. 2.

    https://www.energate-messenger.de/news/188098/fresh-energy-startet-mehrwertdienst

References

  1. Al-Debei, M. M., & Avison, D. (2010). Developing a unified framework of the business model concept. European Journal of Information Systems, 19(3), 359–376.

    Google Scholar 

  2. Allmendinger, G., & Lombreglia, R. (2005). Four strategies for the age of smart services. Harvard Business Review, 83(10), 131–145.

    Google Scholar 

  3. Alshahrani, S., Khalid, M., & Almuhaini, M. (2019). Electric vehicles beyond energy storage and modern power networks: Challenges and applications. IEEE Access, 7, 99031–99064.

    Google Scholar 

  4. Alvarez, O., Ghanbari, A., & Markendahl, J. (2015). Smart energy: Competitive landscape and collaborative business models. In Proceedings of the 18th International Conference on Intelligence in Next Generation Networks (ICIN 2015) (pp. 114–120). Paris, France.

  5. Andersen, P. H., Mathews, J. A., & Rask, M. (2009). Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 37(7), 2481–2486.

    Google Scholar 

  6. Bache, V., Capito, R., Hasenkamp, C., & Koenig, C. (2010). “DC for AC” … no hard-rock band, but a new and unregulated business model for electricity retail markets. Competition and Regulation in Network Industries, 11(3), 246–263.

    Google Scholar 

  7. Baden-Fuller, C., & Haefliger, S. (2013). Business models and technological innovation. Long Range Planning, 46(6), 419–426.

    Google Scholar 

  8. Bae, M., Kim, H., Kim, E., Chung, A. Y., Kim, H., & Roh, J. H. (2014). Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system. Applied Energy, 133, 252–273.

    Google Scholar 

  9. Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014). Revealing household characteristics from smart meter data. Energy, 78, 397–410.

    Google Scholar 

  10. Behrangrad, M. (2015). A review of demand side management business models in the electricity market. Renewable and Sustainable Energy Reviews, 47, 270–283.

    Google Scholar 

  11. Beverungen, D., Müller, O., Matzner, M., Mendling, J., & vom Brocke, J. (2019). Conceptualizing smart service systems. Electronic Markets, 29(1), 7–18.

    Google Scholar 

  12. Bhatti, H. J., & Danilovic, M. (2018). Business model innovation approach for commercializing smart grid systems. American Journal of Industrial and Business Management, 8(9), 2007–2051.

    Google Scholar 

  13. Bischoff, D., Kinitzki, M., Wilke, T., Zeqiraj, F., Zivkovic, S., Koppenhöfer, C., et al. (2017). Smart meter based business models for the electricity sector – a systematical literature research. In Proceedings of the 3rd Digital Enterprise Computing Conference (DEC 2017) (pp. 79–90). Böblingen, Germany.

  14. Brandt, T., Wagner, S., & Neumann, D. (2012). Road to 2020: IS-supported business models for electric mobility and electrical energy markets. In Proceedings of the 33rd conference on Information Systems (ICIS 2012) (pp. 3758–3767). Orlando, USA.

  15. Brunekreeft, G., Buchmann, M., Dänekas, C., Guo, X., Mayer, C., Merkel, M., et al. (2015). Germany’s way from conventional power grids towards smart grids. In Regulatory pathways for smart grid development in China (pp. 45–78). Wiesbaden: Springer Fachmedien Wiesbaden.

    Google Scholar 

  16. Bryant, S. T., Straker, K., & Wrigley, C. (2018). The typologies of power: Energy utility business models in an increasingly renewable sector. Journal of Cleaner Production, 195, 1032–1046.

    Google Scholar 

  17. Budde Christensen, T., Wells, P., & Cipcigan, L. (2012). Can innovative business models overcome resistance to electric vehicles? Better place and battery electric cars in Denmark. Energy Policy, 48, 498–505.

    Google Scholar 

  18. Burger, S. P., & Luke, M. (2017). Business models for distributed energy resources: A review and empirical analysis. Energy Policy, 109, 230–248.

    Google Scholar 

  19. Chesbrough, H., & Rosenbloom, R. S. (2002). The role of the business model in capturing value from innovation: Evidence from Xerox Corporation’s technology spin-off companies. Industrial and Corporate Change, 11(3), 529–555.

    Google Scholar 

  20. Christensen, C. M., & Bower, J. L. (1996). Customer power, strategic investment, and the failure of leading firms. Strategic Management Journal, 17(17), 197–218.

    Google Scholar 

  21. Curtius, H. C., Künzel, K., & Loock, M. (2012). Generic customer segments and business models for smart grids. Der Markt, 51(2–3), 63–74.

    Google Scholar 

  22. Dave, S., Sooriyabandara, M., & Yearworth, M. (2013). System behaviour modelling for demand response provision in a smart grid. Energy Policy, 61, 172–181.

    Google Scholar 

  23. De Reuver, M., & Haaker, T. (2007). Business model dynamics: A longitudinal, cross-sectional case survey. In Proceedings of the 20th Bled Electronic Commerce Conference (Bled 2007) (pp. 429–442). Bled, Slovenia.

  24. Dijkman, R. M., Sprenkels, B., Peeters, T., & Janssen, A. (2015). Business models for the internet of things. International Journal of Information Management, 35(6), 672–678.

    Google Scholar 

  25. Engelken, M., Römer, B., Drescher, M., Welpe, I. M., & Picot, A. (2016). Comparing drivers, barriers, and opportunities of business models for renewable energies: A review. Renewable and Sustainable Energy Reviews, 60, 795–809.

    Google Scholar 

  26. Fang, C., Fan, B., Sun, T., Feng, D., & Chen, J. (2017). Business models for demand response aggregators under regulated power markets. CIRED – Open Access Proceedings Journal, 2017(1), 1614–1617.

    Google Scholar 

  27. Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18–28.

    Google Scholar 

  28. Fichman, R., Dossantos, B., & Jindal, N. (2014). Digital innovation as fundamental and powerful concept in the information systems curriculum. MIS Quarterly, 38(2), 329–353.

    Google Scholar 

  29. Fleisch, E., Weinberger, M., & Wortmann, F. (2014). Geschäftsmodelle im Internet der Dinge. HMD Praxis der Wirtschaftsinformatik, 51, 812–826.

    Google Scholar 

  30. Fox-Penner, P. (2009). Fix utilities before they need a rescue. Harvard Business Review, 87(10), 132–132.

    Google Scholar 

  31. Fritz, T., Mohr, M., & Staeglich, J. (2017). Digital electricity – German utilities need to digitize – Or risk disruption. Energy Journal, 3, 2–5.

    Google Scholar 

  32. Geelen, D., Reinders, A., & Keyson, D. (2013). Empowering the end-user in smart grids: Recommendations for the design of products and services. Energy Policy, 61, 151–161.

    Google Scholar 

  33. Georgakopoulos, D., & Jayaraman, P. P. (2016). Internet of things: From internet scale sensing to smart services. Computing, 98(10), 1041–1058.

    Google Scholar 

  34. Giordano, V., & Fulli, G. (2012). A business case for smart grid technologies: A systemic perspective. Energy Policy, 40(1), 252–259.

    Google Scholar 

  35. Goebel, C. (2013). On the business value of ICT-controlled plug-in electric vehicle charging in California. Energy Policy, 53, 1–10.

    Google Scholar 

  36. Goebel, C., Jacobsen, H.-A., del Razo, V., Doblander, C., Rivera, J., Ilg, J., et al. (2014). Energy informatics. Business & Information Systems Engineering, 6(1), 25–31.

    Google Scholar 

  37. Goldbach, K., Rotaru, A. M., Reichert, S., Stiff, G., & Gölz, S. (2018). Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts. Energy Policy, 115, 239–248.

    Google Scholar 

  38. Grosse, M., Send, H., & Schildhauer, T. (2019). Lessons learned from establishing the energy-informatics business model: Case of a German energy company. Sustainability, 11(3), 857–875.

    Google Scholar 

  39. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Future generation computer systems internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Google Scholar 

  40. Hall, S., & Roelich, K. (2016). Business model innovation in electricity supply markets: The role of complex value in the United Kingdom. Energy Policy, 92, 286–298.

    Google Scholar 

  41. Hamelink, M., & Opdenakker, R. (2019). How business model innovation affects firm performance in the energy storage market. Renewable Energy, 120–127.

  42. Hamwi, M., & Lizarralde, I. (2017). A review of business models towards service-oriented electricity systems. In Procedia CIRP (Vol. 64, pp. 109–114). Copenhagen, Denmark.

  43. Hatzl, S., Seebauer, S., Fleiß, E., & Posch, A. (2016). Market-based vs. grassroots citizen participation initiatives in photovoltaics: A qualitative comparison of niche development. Futures, 78–79, 57–70.

    Google Scholar 

  44. He, X., Delarue, E., D’haeseleer, W., & Glachant, J. M. (2011). A novel business model for aggregating the values of electricity storage. Energy Policy, 39(3), 1575–1585.

    Google Scholar 

  45. Helms, T., Loock, M., & Bohnsack, R. (2016). Timing-based business models for flexibility creation in the electric power sector. Energy Policy, 92, 348–358.

    Google Scholar 

  46. Hilger, L., Schneiders, T., Meyer, F. P., & Kroll, J.-P. (2018). Use of smart technologies for energy efficiency, energy-and load management in small and medium sized enterprises (SMEs). In Proceedings of the 7th International Energy and Sustainability Conference (IESC) (pp. 1–8). Cologne, Germany. 

  47. Hyytinen, K., & Toivonen, M. (2015). Future energy services: Empowering local communities and citizens. Foresight, 17(4), 349–364.

    Google Scholar 

  48. IEA. (2019). Smart grids – Tracking clean energy progress. https://www.iea.org/tcep/energyintegration/smartgrids/. Accessed 3 Sept 2019.

  49. Jiao, N., & Evans, S. (2016). Business models for sustainability: The case of second-life electric vehicle batteries. In Procedia CIRP (Vol. 40, pp. 250–255). Binh Du’o’ng New City, Vietnam.

  50. Johnson, M. W., Christensen, C. M., & Kagermann, H. (2008). Reinventing your business model. Harvard Business Review, 86(12), 57–68.

    Google Scholar 

  51. Kahlen, M., Ketter, W., & van Dalen, J. (2014). Balancing with electric vehicles: A profitable business model. In Proceedings of the 22nd European conference on information systems (ECIS 2014). Tel Aviv, Israel.

  52. Kalathil, D., Wu, C., Poolla, K., & Varaiya, P. (2019). The sharing economy for the electricity storage. IEEE Transactions on Smart Grid, 10(1), 556–567.

    Google Scholar 

  53. Khan, S., Shariff, S., Ahmad, A., & Saad Alam, M. (2018). A comprehensive review on level 2 charging system for electric vehicles. Smart Science, 6(3), 271–293.

    Google Scholar 

  54. Khripko, D., Morioka, S. N., Evans, S., Hesselbach, J., & de Carvalho, M. M. (2017). Demand side management within industry: A case study for sustainable business models. In Procedia manufacturing (Vol. 8, pp. 270–277). Stellenbosch, South Africa.

  55. Kim, Y. M., Jung, D., Chang, Y., & Choi, D. H. (2019). Intelligent micro energy grid in 5G era: Platforms, business cases, testbeds, and next generation applications. Electronics, 8(4), 468.

    Google Scholar 

  56. Kley, F., Lerch, C., & Dallinger, D. (2011). New business models for electric cars-A holistic approach. Energy Policy, 39(6), 3392–3403.

    Google Scholar 

  57. Koirala, B. P., Koliou, E., Friege, J., Hakvoort, R. A., & Herder, P. M. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722–744.

    Google Scholar 

  58. Koirala, B. P., van Oost, E., & van der Windt, H. (2018). Community energy storage: A responsible innovation towards a sustainable energy system? Applied Energy, 231(June), 570–585.

    Google Scholar 

  59. Kranz, J., Kolbe, L. M., Koo, C., & Boudreau, M. C. (2015). Smart energy: Where do we stand and where should we go? Electronic Markets, 25(1), 7–16.

    Google Scholar 

  60. Kuller, P., Dorsch, N., & Korsakas, A. (2015). Energy co-operatives business models: Intermediate result from eight case studies in southern Germany. In Proceedings of the 5th International Youth Conference on Energy (IYCE 2015). Pisa, Italy.

  61. Lambert, S. C. (2015). The importance of classification to business model research. Journal of Business Models, 3(1), 49–61.

    Google Scholar 

  62. Lasseter, R. H. (2002). MicroGrids. In Proceedings of the IEEE power engineering society winter meeting conference. New York, USA.

  63. Laurischkat, K., Viertelhausen, A., & Jandt, D. (2016). Business models for electric mobility. In Procedia CIRP (Vol. 47, pp. 483–488). Bergamo, Italy.

  64. Lezama, F., Soares, J., Faia, R., Vale, Z., Macedo, L. H., & Romero, R. (2019). Business models for flexibility of electric vehicles. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2019) (pp. 1873–1878). Prague, Czech Republic.

  65. Liu, J., Zhang, N., Kang, C., Kirschen, D., & Xia, Q. (2017). Cloud energy storage for residential and small commercial consumers: A business case study. Applied Energy, 188, 226–236.

    Google Scholar 

  66. Löbbe, S., & Hackbarth, A. (2017). The transformation of the German electricity sector and the emergence of new business models in distributed energy systems. In Innovation and disruption at the grid’s edge (pp. 287–318). Elsevier.

  67. Lund, H., Andersen, A. N., Østergaard, P. A., Mathiesen, B. V., & Connolly, D. (2012). From electricity smart grids to smart energy systems – A market operation based approach and understanding. Energy, 42(1), 96–102.

    Google Scholar 

  68. Lynch, P., Power, J., Hickey, R., & Messervey, T. (2017). Business model strategies: Flexibility trade in emerging low voltage distribution networks. Entrepreneurship and Sustainability Issues, 4(3), 380–391.

    Google Scholar 

  69. Makris, P., Efthymiopoulos, N., Nikolopoulos, V., Pomazanskyi, A., Irmscher, B., Stefanov, K., et al. (2018). Digitization era for electric utilities: A novel business model through an inter-disciplinary s/w platform and open research challenges. IEEE Access, 6, 22452–22463.

    Google Scholar 

  70. Martin-Martínez, F., Sánchez-Miralles, A., & Rivier, M. (2016). A literature review of Microgrids: A functional layer based classification. Renewable and Sustainable Energy Reviews, 62, 1133–1153.

    Google Scholar 

  71. Massey, B., Verma, P., & Khadem, S. (2018). Citizen engagement as a business model for smart energy communities. In Proceedings of the 5th international symposium on Environment-Friendly Energies and Applications (EFEA 2018). Rome, Italy.

  72. Matusiak, B. E. B. E., Melo, F., Piotrowski, K., & Melo, F. (2015). Energy management using the business model approach. In Proceedings of the 12th international conference on the European Energy Market (EEM 2015). Lisbon, Portugal.

  73. Mayring, P. (2010). Qualitative Inhaltsanalyse. In G. Mey & K. Mruck (Eds.), Handbuch qualitative Forschung in der Psychologie (pp. 601–613). Wiesbaden: VS Verlag für Sozialwissenschaften.

    Google Scholar 

  74. Morris, M., Schindehutte, M., & Allen, J. (2005). The entrepreneur’s business model: Toward a unified perspective. Journal of Business Research, 58(6), 726–735.

    Google Scholar 

  75. Niesten, E., & Alkemade, F. (2016). How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects. Renewable and Sustainable Energy Reviews, 53, 629–638.

    Google Scholar 

  76. NIST. (2014, October). NIST framework and roadmap for smart grid interoperability standards, release 3.0. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1108r3.pdf. Accessed 15 Apr 2018.

  77. Oren, S. S. (2013). A historical perspective and business model for load response aggregation based on priority service. In Proceedings of the 46th Hawaii International Conference on System Sciences (HICSS 2013) (pp. 2206–2214). Wailea, USA.

  78. Osterwalder, A. (2004). The business model ontology – a proposition in a design science approach. Doctoral dissertation, University of Lausanne.

  79. Osterwalder, A., & Pigneur, Y. (2002). An E-business model ontology for modeling E-business. In Proceedings of the 15th Bled Electronic Commerce Conference (Bled 2002) (pp. 75–91). Bled, Slovenia.

  80. Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game changers, and challengers. Hoboken: Wiley.

    Google Scholar 

  81. Paukstadt, U. (2019). A survey of smart energy services for private households. In Proceedings of the 14th international conference on Wirtschaftsinformatik (WI 2019). Siegen, Germany.

  82. Paukstadt, U., Gollhardt, T., Blarr, M., Chasin, F., & Becker, J. (2019). A consumer-oriented smart energy business model taxonomy. In Proceedings of the 27th European Conference on Information Systems (ECIS 2019). Stockholm and Uppsala, Sweden.

  83. Pereira, G. I., Specht, J. M., Silva, P. P., & Madlener, R. (2018). Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making. Energy Policy, 121, 426–440.

    Google Scholar 

  84. Peters, C., Blohm, I., & Leimeister, J. M. (2015). Anatomy of successful business models for complex services: Insights from the telemedicine field. Journal of Management Information Systems, 32(3), 75–104.

    Google Scholar 

  85. Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64–88.

    Google Scholar 

  86. Pousttchi, K., & Hufenbach, Y. (2011). Value creation in the mobile market: A reference model for the role(s) of the future mobile network operator. Business and Information Systems Engineering, 3(5), 299–311.

    Google Scholar 

  87. Pouttu, A., Haapola, J., Ahokangas, P., Xu, Y., Kopsakangas-Savolainen, M., Porras, E., et al. (2017). P2P model for distributed energy trading, grid control and ICT for local smart grids. In Procceedings of the 26th European Conference on Networks and Communications (EuCNC 2017). Oulu, Finland.

  88. Riasanow, T., Galic, G., & Böhm, M. (2017). Digital transformation in the automative industry: Towards a generic value network. In Proceedings of the 25th European Conference on Information Systems (ECIS 2017). Guimarães, Portugal.

  89. Richter. (2012). Utilities’ business models for renewable energy: A review. Renewable and Sustainable Energy Reviews, 16(5), 2483–2493.

    Google Scholar 

  90. Richter, L.-L., & Pollitt, M. G. (2018). Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market. Energy Economics, 72, 436–450.

    Google Scholar 

  91. Rodríguez-Molina, J., Martínez-Núñez, M., Martínez, J. F., & Pérez-Aguiar, W. (2014). Business models in the smart grid: Challenges, opportunities and proposals for prosumer profitability. Energies, 7(9), 6142–6171.

    Google Scholar 

  92. Rodríguez-Molina, J., Martínez, J.-F., & Castillejo, P. (2016). A study on applicability of distributed energy generation, storage and consumption within small scale facilities. Energies, 9(9), 745.

    Google Scholar 

  93. Ropuszyńska-Surma, E., & Węglarz, M. (2019). The virtual power plant – A review of business models. In E3S web of conferences (Vol. 108, p. 01006). Krakow, Poland.

  94. Roscher, M., Fluhr, J., & Lutz, T. (2013). Optimized integration of electric vehicles with Lithium Iron phosphate batteries into the regulation service market of smart grids – enhanced vehicle-to-grid business model. In Proceedings of the 2nd international conference on Smart Grids and Green IT Systems (SMARTGREEENS 2013) (pp. 88–92). Aachen, Germany.

  95. Salah, F., Flath, C. M., Schuller, A., Will, C., & Weinhardt, C. (2017). Morphological analysis of energy services: Paving the way to quality differentiation in the power sector. Energy Policy, 106, 614–624.

    Google Scholar 

  96. San Román, T. G., Momber, I., Abbad, M. R., & Sánchez Miralles, Á. (2011). Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships. Energy Policy, 39(10), 6360–6375.

    Google Scholar 

  97. Sánchez-Miralles, A., Gomez, S. R., Fernandez, I. J., & Calvillo, C. F. (2014). Towards the effective integration of electric vehicles in the grid. IEEE Intelligent Transportation Systems Magazine, 6(4), 45–56.

    Google Scholar 

  98. Sepponen, M., & Heimonen, I. (2016). Business concepts for districts’ energy hub systems with maximised share of renewable energy. Energy and Buildings, 124, 273–280.

    Google Scholar 

  99. Shafer, S. M., Smith, H. J., Linder, J. C., Scott, B., Shafer, M., Smith, H. J., & Linder, J. C. (2005). The power of business models. Business Horizons, 48(3), 199–207.

    Google Scholar 

  100. Shomali, A., & Pinkse, J. (2016). The consequences of smart grids for the business model of electricity firms. Journal of Cleaner Production, 112, 3830–3841.

    Google Scholar 

  101. Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in industry 4.0: A review of the concept and of energy management approached in production based on the internet of things paradigm. In Proceedings of the 21st IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2014) (pp. 697–701). Bandar Sunway, Malaysia.

  102. Sisinni, M., Noris, F., Smit, S., Messervey, T., Crosbie, T., Breukers, S., & van Summeren, L. (2017). Identification of value proposition and development of innovative business models for demand response products and services enabled by the DR-BOB solution. Buildings, 7(4), 93.

    Google Scholar 

  103. Steriotis, K., Tsaousoglou, G., Efthymiopoulos, N., Makris, P., & Varvarigos, E. (Manos). (2018). A novel behavioral real time pricing scheme for the active energy consumers’ participation in emerging flexibility markets. Sustainable Energy, Grids and Networks, 16, 14–27.

  104. Strüker, J., Weppner, H., & Bieser, G. (2011). Intermediaries for the internet of energy – Exchanging smart meter data as a business model. In Proceedings of the 19th European Conference on Information Systems (ECIS 2011). Helsinki, Finland.

  105. Teece, D. J. (2010). Business models, business strategy and innovation. Long Range Planning, 43(2–3), 172–194.

    Google Scholar 

  106. Turber, S., Vom Brocke, J., Gassmann, O., & Fleisch, E. (2014). Designing business models in the era of internet of things. In Proceedings of the 9th international conference on Design Science Research in Information Systems (DESRIST 2014) (pp. 17–31). Miami, USA.

  107. US. Department of Energy. (2006). Benefits of demand response in electricity markets and recommendations for achieving them: a report to the United States congress pursuant to section 1252 of the Energy Policy Act of 2005. https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_Benefits_of_Demand_Response_in_Electricity_Markets_and_Recommendations_for_Achieving_Them_Report_to_Congress.pdf. Accessed 26 Apr 2018.

  108. Valocchi, M., Juliano, J., & Schurr, A. (2014). Switching perspectives: Creating new business models for a changing world of energy. In D. Mah, P. Hills, V. O. K. Li, & R. Balme (Eds.), Smart grid applications and developments (pp. 165–184). London: Springer.

    Google Scholar 

  109. Valtanen, K., Backman, J., & Yrjola, S. (2019). Blockchain-powered value creation in the 5G and smart grid use cases. IEEE Access, 7, 25690–25707.

    Google Scholar 

  110. Van Dam, S. S., Bakker, C. A., & Van Hal, J. D. M. (2010). Home energy monitors: Impact over the medium-term. Building Research and Information, 38(5), 458–469.

    Google Scholar 

  111. Vasirani, M., & Ossowski, S. (2013). Smart consumer load balancing: State of the art and an empirical evaluation in the Spanish electricity market. Artificial Intelligence Review, 39(1), 81–95.

    Google Scholar 

  112. Vom Brocke, J., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the Giant: On the importance of rigour in documenting the literature search process. In Proceedings of the 17th European Conference on Information Systems (ECIS 2009) (pp. 2206–2217). Verona, Italy.

  113. Wagner, S., Brandt, T., & Neumann, D. (2013). Beyond mobility – An energy informatics business model for vehicles in the electric age. In Proceedings of the 21st European Conference on Information Systems (ECIS 2013). Utrecht, Netherlands.

  114. Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), xiii–xxiii.

    Google Scholar 

  115. Weiller, C., & Neely, A. (2014). Using electric vehicles for energy services: Industry perspectives. Energy, 77, 194–200.

    Google Scholar 

  116. Wilde, T., & Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik. Eine empirische Untersuchung. Wirtschaftsinformatik, 49(4), 280–287.

    Google Scholar 

  117. Wolsink, M. (2012). The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renewable and Sustainable Energy Reviews, 16(1), 822–835.

    Google Scholar 

  118. Wunderlich, P., Kranz, J., Totzek, D., Veit, D., & Picot, A. (2012). The impact of endogenous motivations on adoption of IT-enabled services: The case of transformative services in the energy sector. Journal of Service Research, 16(3), 356–371.

    Google Scholar 

  119. Wünderlich, N. V., Heinonen, K., Ostrom, A. L., Patricio, L., Sousa, R., Voss, C., & Lemmink, J. G. (2015). “Futurizing” smart service: Implications for service researchers and managers. Journal of Services Marketing, 29(6/7), 442–447.

    Google Scholar 

  120. Xu, Y., Ahokangas, P., & Reuter, E. (2018a). EAAS: Electricity as a service? Journal of Business Models, 6(3), 1–23.

    Google Scholar 

  121. Xu, Y., Ahokangas, P., Yrjölä, S., & Koivumäki, T. (2018b). The blockchain marketplace as the fifth type of electricity market. In Proceedings of the 2nd international conference on Smart Grid Inspired Future Technologies (SmartGIFT 2018) (pp. 278–288). Auckland, New Zealand.

  122. Xu, Y., Ahokangas, P., Yrjölä, S., & Koivumäki, T. (2019). The fifth archetype of electricity market: The blockchain marketplace. Wireless Networks, 1–17.

  123. Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The new organizing logic of digital innovation: An agenda for information systems research. Information Systems Research, 21(4), 724–735.

    Google Scholar 

  124. Zaidi, B. H., Bhatti, D. M. S., & Ullah, I. (2018). Combinatorial auctions for energy storage sharing amongst the households. Journal of Energy Storage, 19, 291–301.

    Google Scholar 

  125. Zhou, Y., Wu, J., & Long, C. (2018). Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework. Applied Energy, 222, 993–1022.

    Google Scholar 

  126. Zott, C., Amit, R., & Massa, L. (2011). The business model: Recent developments and future research. Journal of Management, 37(4), 1019–1042.

    Google Scholar 

Download references

Acknowledgements

This paper has been written in context of the research project “VISE: Virtuelles Institut Smart Energy”(https://www.smart-energy.nrw/). The project is funded by the “European Regional Development Fund (ERDF) 2014-2020”. We would like to thank the editor and anonymous reviewers for their insightful comments that helped to advance this paper throughout the review process.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ute Paukstadt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Internet of Things for Electronic Markets

Responsible Editor: Yun Wan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paukstadt, U., Becker, J. Uncovering the business value of the internet of things in the energy domain – a review of smart energy business models. Electron Markets (2019). https://doi.org/10.1007/s12525-019-00381-8

Download citation

Keywords

  • Smart energy
  • Smart grid
  • Smart energy business models
  • Smart grid business models
  • Internet of things business models

JEL classification

  • Q40
  • L94
  • L86
  • O32
  • M10