Advertisement

Robotic process automation

  • Peter HofmannEmail author
  • Caroline Samp
  • Nils Urbach
Fundamentals

Abstract

Within digital transformation, which is continuously progressing, robotic process automation (RPA) is drawing much corporate attention. While RPA is a popular topic in the corporate world, the academic research lacks a theoretical and synoptic analysis of RPA. Conducting a literature review and tool analysis, we propose – in a holistic and structured way – four traits that characterize RPA, providing orientation as well as a focus for further research. Software robots automate processes originally performed by human work. Thus, software robots follow a choreography of technological modules and control flow operators while operating within IT ecosystems and using established applications. Ease-of-use and adaptability allow companies to conceive and implement software robots through (agile) projects. Organizational and IT strategy, governance structures, and management systems therefore must address both the direct effects of software robots automating processes and their indirect impacts on firms.

Keywords

Robotic process automation Business process automation Software robots IS ecosystems Back-office RPA 

JEL classification

M15 (IT Management) 

Notes

References

  1. Accenture. (2016). Getting robots right: How to avoid the SIX most damaging mistakes in scaling up Robotic Process Automation. Google Scholar
  2. Aguirre, S., & Rodriguez, A. (2017). Automation of a business process using robotic process automation (RPA): A case study. In J. C. Figueroa-García, E. R. López-Santana, J. L. Villa-Ramírez, & R. Ferro-Escobar (Eds.), Communications in computer and information science. Applied computer sciences in engineering (pp. 65–71). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-66963-2_7.CrossRefGoogle Scholar
  3. Alt, R. (2018). Electronic Markets on digitalization. Electronic Markets, 28(4), 397–402.  https://doi.org/10.1007/s12525-018-0320-7.CrossRefGoogle Scholar
  4. Asatiani, A., & Penttinen, E. (2016). Turning robotic process automation into commercial success-case OpusCapita. Journal of Information Technology Teaching Cases, 6, 67–74.CrossRefGoogle Scholar
  5. Berruti, F., Nixon, G., Taglloni, G., & Whiteman, R. (2017). Intelligent process automation: The engine at the core of the next-generation operating model. Google Scholar
  6. Bygstad, B. (2015). The coming of lightweight IT. In Proceedings of the 23rd European Conference on Information Systems (ECIS) (pp. 1–16). Münster, Germany.Google Scholar
  7. Bygstad, B., Hanseth, O., Siebenherz, A., & Øvrelid, E. (2017). Process innovation meets digital infrastructure in a high-tech hospital. In Proceedings of the 25th European Conference on Information Systems (ECIS) (pp. 801–814). Guimarães, Portugal.Google Scholar
  8. Bygstad, B., & Iden, J. (2017). A governance model for managing lightweight IT. In Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Recent advances in information systems and technologies (pp. 384–393). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-56535-4_39.CrossRefGoogle Scholar
  9. Cline, B., Henry, M., & Justice, C. (2016). Rise of the robots.: KPMG.Google Scholar
  10. Evans, G. L. (2017). Disruptive technology and the board: The tip of the iceberg. Economics and Business Review, 3(17)(1), 205–223.  https://doi.org/10.18559/ebr.2017.1.11.CrossRefGoogle Scholar
  11. Fersht, P., & Slaby, J. (2012). Robotic automation emerges as a threats to traditional low-cost outsourcing. Google Scholar
  12. Forrester Research. (2014). Building a center of expertise to support robotic automation: Preparing for the life cycle of business change. Google Scholar
  13. Forrester Research. (2017). The new frontier of automation: Enterprise RPA. Google Scholar
  14. Fung, H. P. (2013). Criteria, use cases and effects of information technology process automation (ITPA). Advances in Robotics & Automation, 3(3).  https://doi.org/10.4172/2168-9695.1000124.
  15. Hallikainen, P., Bekkhus, R., & Pan, S. L. (2018). How OpusCapita used internal RPA capabilities to offer services to clients. MIS Quarterly Executive, 17, 41–52.Google Scholar
  16. Hull, R., & Motahari-Nezhad, H. R. (2016). Rethinking BPM in a cognitive world: Transforming how we learn and perform business processes. In M. La Rosa, P. Loos, & O. Pastor (Eds.), Business process management, Lecture notes in computer science (pp. 3–19). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-45348-4_1.CrossRefGoogle Scholar
  17. IEEE Corporate Advisory Group. (2017). IEEE guide for terms and concepts in intelligent process automation. Google Scholar
  18. Information Services Group. (2018). RPA in Europe: Enterprise plans, budgets and organizational impact. Google Scholar
  19. Jöhnk, J., Röglinger, M., Thimmel, M., & Urbach, N. (2017). How to implement agile IT setups: A taxonomy of design options. In Proceedings of the 25th European Conference on Information Systems (ECIS) (pp. 1521–1535). Guimarães, Portugal.Google Scholar
  20. KPMG. (2016). Transforming business models with robotic process automation: Fulfilling the vision of global business services. Google Scholar
  21. Kroll, C., Bujak, A., Darius, V., Enders, W., & Esser, M. (2016). Robotic process automation: Robots conquer business processes in back offices.: Capgemini Consulting.Google Scholar
  22. Lacity, M., & Willcocks, L. (2016a). Robotic process automation: The next transformation lever for shared services. The Outsourcing Unit Working Research Paper Series.Google Scholar
  23. Lacity, M., & Willcocks, L. (2016b). A new approach to automating services. MIT Sloan Management Review, Fall.Google Scholar
  24. Lacity, M., Willcocks, L., & Craig, A. (2015). Robotic process automation at Telefónica O2. The Outsourcing Unit Working Research Paper Series.Google Scholar
  25. Lacity, M., Willcocks, L., & Craig, A. (2017). Service automations: Cognitive virtual agents at SEB Bank. The Outsourcing Unit Working Research Paper Series.Google Scholar
  26. Le Clair, C. (2017). The Forrester wave: Robotic process automation, Q1 2017. Forrester Research.Google Scholar
  27. Le Clair, C. (2018). The Forrester wave: Robotic process automation, Q2 2018. Forrester Research.Google Scholar
  28. Leopold, H., van der Aa, H., & Reijers, H. A. (2018). Identifying candidate tasks for robotic process automation in textual process descriptions. In J. Gulden, I. Reinhartz-Berger, R. Schmidt, S. Guerreiro, W. Guédria, & P. Bera (Eds.), Enterprise, business-process and information systems modeling, Lecture notes in business information processing (Vol. 318, pp. 67–81). Cham: Springer International Publishing.CrossRefGoogle Scholar
  29. Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2003). Six sigma: A goal-theoretic perspective. Journal of Operations Management, 21(2), 193–203.  https://doi.org/10.1016/S0272-6963(02)00087-6.CrossRefGoogle Scholar
  30. Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Applications, 23(2), 368–375.  https://doi.org/10.1007/s11036-017-0932-8.CrossRefGoogle Scholar
  31. Mendling, J., Decker, G., Hull, R., Reijers, H. A., & Weber, I. (2018). How do machine learning, robotic process automation, and Blockchains affect the human factor in business process management? Communications of the Association for Information Systems, 43, 297–320  https://doi.org/10.17705/1CAIS.04319.CrossRefGoogle Scholar
  32. Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1–10.  https://doi.org/10.2308/jeta-10589.CrossRefGoogle Scholar
  33. Okoli, C. (2015). A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems, 37, 879–910.  https://doi.org/10.17705/1CAIS.03743.CrossRefGoogle Scholar
  34. Penttinen, E., Kasslin, H., & Asatiani, A. (2018). How to choose between robotic process automation and Back-end system automation? In Proceedings of the 28th European Conference on Information Systems (ECIS). Portsmouth, UK.Google Scholar
  35. Seasongood, S. (2016). Not just for the assembly line: A case for robotics in accounting and finance. Financial Executive, 32, 31–32.Google Scholar
  36. Sutherland, C. (2013). Framing a Constitution for Robotistan: Racing with the Machine of Robotic Automation : Hfs Research.Google Scholar
  37. Teng, S.-H., & Ho, S.-Y. (1996). Failure mode and effects analysis. International Journal of Quality & Reliability Management, 13(5), 8–26.  https://doi.org/10.1108/02656719610118151.CrossRefGoogle Scholar
  38. Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27(2), 237–246.  https://doi.org/10.1177/1098214005283748.CrossRefGoogle Scholar
  39. Van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic process automation. Business & Information Systems Engineering, 60(4), 269–272.  https://doi.org/10.1007/s12599-018-0542-4.CrossRefGoogle Scholar
  40. Vedder, R., & Guynes, C. S. (2016). The challenge of botsourcing. Review of Business Information Systems (RBIS), 20(1).  https://doi.org/10.19030/rbis.v20i1.9677.CrossRefGoogle Scholar
  41. Vom Brocke, J., Maaß, W., Buxmann, P., Maedche, A., Leimeister, J. M., & Pecht, G. (2018). Future work and enterprise systems. Business & Information Systems Engineering, 60(4), 357–366.  https://doi.org/10.1007/s12599-018-0544-2.CrossRefGoogle Scholar
  42. Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26, xiii–xxiii.Google Scholar
  43. Willcocks, L., Lacity, M., & Craig, A. (2015a). Robotic process automation at Xchanging. The Outsourcing Unit Working Research Paper Series.Google Scholar
  44. Willcocks, L., Lacity, M., & Craig, A. (2015b). The IT function and robotic process automation. The Outsourcing Unit Working Research Paper Series.Google Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2019

Authors and Affiliations

  1. 1.Project Group Business & Information Systems Engineering of Fraunhofer FITBayreuthGermany
  2. 2.University of BayreuthBayreuthGermany
  3. 3.FIM Research Center, Project Group Business & Information Systems Engineering of Fraunhofer FITUniversity of BayreuthBayreuthGermany

Personalised recommendations