Online video impact of world class universities

Abstract

YouTube has become the standard social network for the dissemination of university multimedia content, but the impact of academic online videos has been scarcely researched. This study covers this gap and provides a new dimension to evaluate university performance. Data and statistics of 416 YouTube accounts and ca. 190,000 online videos of world class universities are gathered. The H-index is adapted to quantify the online video impact, universities are ranked accordingly and the correlates of impact are analyzed. The H-based ranking of online video impact is closely related to standard rankings of world class universities, with a stronger relation than that with other online video related metrics. Research productivity and online video orientation of a university are robustly related to online video impact, whereas teaching, university size and geographical location are not.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Academic Ranking of World Universities, ARWU (2015), available at: http://www.shanghairanking.com/ARWU2015.html

  2. Aguillo, I. F., Ortega, J. L., & Fernández, M. (2008). Webometric ranking of world universities: Introduction, methodology, and future developments. Higher Education in Europe, 33(2–3), 233–244.

    Google Scholar 

  3. Aguillo, I. F., Bar-Ilan, J., Levene, M., & Ortega, J. L. (2010). Comparing university rankings. Scientometrics, 85(1), 243–256.

    Google Scholar 

  4. Ajjan, H., & Hartshorne, R. (2008). Investigating faculty decisions to adopt Web 2.0 technologies: Theory and empirical tests. The Internet and Higher Education, 11(2), 71–80.

    Google Scholar 

  5. Ann Voss, K., & Kumar, A. (2013). The value of social media: Are universities successfully engaging their audience? Journal of Applied Research in Higher Education, 5(2), 156–172.

    Google Scholar 

  6. Balakrishnan, J., & Griffiths, M. D. (2017). Social media addiction: What is the role of content in YouTube? Journal of Behavioral Addictions, 6(3), 364–377.

    Google Scholar 

  7. Belanger, C. H., Bali, S., & Longden, B. (2014). How Canadian universities use social media to brand themselves. Tertiary Education and Management, 20(1), 14–29.

    Google Scholar 

  8. Berk, R. A. (2009). Multimedia teaching with video clips: TV, movies, YouTube, and mtvU in the college classroom. International Journal of Technology in Teaching and Learning, 5(1), 1–21.

    Google Scholar 

  9. Blumler, J. G., & Katz, E. (1974). The uses of mass communications: Current perspectives on gratifications research. Newbury Park: Sage.

    Google Scholar 

  10. Borghol, Y., Mitra, S., Ardon, S., Carlsson, N., Eager, D., & Mahanti, A. (2011). Characterizing and modelling popularity of user-generated videos. Performance Evaluation, 68(11), 1037–1055.

    Google Scholar 

  11. Borghol, Y., Ardon, S., Carlsson, N., Eager, D., & Mahanti, A. (2012). The untold story of the clones: Content-agnostic factors that impact YouTube video popularity. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 1186–1194.

  12. Bowman, N. A., & Bastedo, M. N. (2011). Anchoring effects in world university rankings: Exploring biases in reputation scores. Higher Education, 61(4), 431–444.

    Google Scholar 

  13. Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173.

    Google Scholar 

  14. Brech, F. M., Messer, U., Vander Schee, B. A., Rauschnabel, P. A., & Ivens, B. S. (2017). Engaging fans and the community in social media: Interaction with institutions of higher education on Facebook. Journal of Marketing for Higher Education, 27(1), 112–130.

    Google Scholar 

  15. Brodersen, A., Scellato, S., & Wattenhofer, M. (2012). YouTube around the world: Geographic popularity of videos. Proceedings of the 21st international conference on World Wide Web, 241–250.

  16. Çakır, M. P., Acartürk, C., Alaşehir, O., & Çilingir, C. (2015). A comparative analysis of global and national university ranking systems. Scientometrics, 103(3), 813–848.

    Google Scholar 

  17. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y. Y., & Moon, S. (2007). I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, 1–14.

  18. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y. Y., & Moon, S. (2009). Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Transactions on Networking (TON), 17(5), 1357–1370.

    Google Scholar 

  19. Chatzopoulou, G., Sheng, C., & Faloutsos, M. (2010). A first step towards understanding popularity in YouTube. INFOCOM IEEE Conference on Computer Communications Workshops, 1–6.

  20. Chen, L., Zhou, Y., & Chiu, D. M. (2015). Analysis and detection of fake views in online video services. ACM Transactions on Multimedia Computing, Communications, and Applications, 11(44), 1–20.

    Google Scholar 

  21. Cheng, X., Liu, J., & Dale, C. (2013). Understanding the characteristics of internet short video sharing: A YouTube-based measurement study. IEEE Transactions on Multimedia, 15(5), 1184–1194.

    Google Scholar 

  22. Chiang, H. S., & Hsiao, K. L. (2015). YouTube stickiness: The needs, personal, and environmental perspective. Internet Research, 25(1), 85–106.

    Google Scholar 

  23. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Lillington: Routledge.

    Google Scholar 

  24. Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019.

    Google Scholar 

  25. Crane, R., & Sornette, D. (2008). Viral, Quality, and Junk Videos on YouTube: Separating Content from Noise in an Information-Rich Environment. AAAI Spring Symposium: Social Information Processing, 18–20.

  26. Dijkmans, C., Kerkhof, P., & Beukeboom, C. J. (2015). A stage to engage: Social media use and corporate reputation. Tourism Management, 47, 58–67.

    Google Scholar 

  27. Fernandez-Cano, A., & Fernández-Guerrero, I. M. (2017). A multivariate model for evaluating emergency medicine journals. Scientometrics, 110(2), 991–1003.

    Google Scholar 

  28. Figueiredo, F., Benevenuto, F., & Almeida, J. M. (2011). The tube over time: characterizing popularity growth of youtube videos. Proceedings of the fourth ACM international conference on Web search and data mining, 745–754.

  29. Figueiredo, F. (2013). On the prediction of popularity of trends and hits for user generated videos. Proceedings of the sixth ACM international conference on Web search and data mining, 741–746.

  30. Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.

    Google Scholar 

  31. Gilroy, M. (2010). Higher education migrates to YouTube and social networks. Education Digest, 75(7), 18–22.

    Google Scholar 

  32. Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of mooc videos. Proceedings of the first ACM conference on Learning @ Scale, 41–50.

  33. Guzmán, A. P., & Del Moral Pérez, M. E. (2014). Trends in use of YouTube: Optimizing the strategic communication of Ibero-American universities. Observatorio, 8(1), 69–94.

    Google Scholar 

  34. Haustein, S., Peters, I., Sugimoto, C. R., Thelwall, M., & Larivière, V. (2014). Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature. Journal of the Association for Information Science and Technology, 65(4), 656–669.

    Google Scholar 

  35. Haustein, S., Costas, R., & Larivière, V. (2015). Characterizing social media metrics of scholarly papers: The effect of document properties and collaboration patterns. PLoS One, 10(3), e0120495.

    Google Scholar 

  36. Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Google Scholar 

  37. Holmberg, K. (2015). Online attention of universities in Finland: Are the bigger universities bigger online too? Procs of ISSI 2015-15th Intl conf of the International Society for Scientometrics and Informetrics, 83–88.

  38. Hovden, R. (2013). Bibliometrics for internet media: Applying the h-index to YouTube. Journal of the American Society for Information Science and Technology, 64(11), 2326–2331.

    Google Scholar 

  39. Hsu, C. L., Chuan-Chuan Lin, J., & Chiang, H. S. (2013). The effects of blogger recommendations on customers’ online shopping intentions. Internet Research, 23(1), 69–88.

    Google Scholar 

  40. Jiang, L., Miao, Y., Yang, Y., Lan, Z., & Hauptmann, A. G. (2014). Viral video style: A closer look at viral videos on YouTube. Proceedings of International Conference on Multimedia Retrieval, 193.

  41. Khan, M. L. (2017). Social media engagement: What motivates user participation and consumption on YouTube? Computers in Human Behavior, 66, 236–247.

    Google Scholar 

  42. Khan, G. F., & Vong, S. (2014). Virality over YouTube: An empirical analysis. Internet Research, 24(5), 629–647.

    Google Scholar 

  43. Kousha, K., Thelwall, M., & Abdoli, M. (2012). The role of online videos in research communication: A content analysis of YouTube videos cited in academic publications. Journal of the American Society for Information Science and Technology, 63(9), 1710–1727.

    Google Scholar 

  44. Koz, O. (2013), “Social media policies in U.S. universities”, Texas social media research institute / social media conference, available at: http://works.bepress.com/olga_koz/2/

  45. Laakso, M., Lindman, J., Shen, C., Nyman, L., & Björk, B. C. (2017). Research output availability on academic social networks: Implications for stakeholders in academic publishing. Electronic Markets, 27(2), 125–133.

    Google Scholar 

  46. Lazaridis, T. (2010). Ranking university departments using the mean h-index. Scientometrics, 82(2), 211–216.

    Google Scholar 

  47. Liao, W. C. (2012). Using short videos in teaching a social science subject: Values and challenges. Journal of the NUS Teaching Academy, 2(1), 42–55.

    Google Scholar 

  48. Liu, N. C., & Cheng, Y. (2005). The academic ranking of world universities. Higher Education in Europe, 30(2), 127–136.

    Google Scholar 

  49. Lovari, A., & Giglietto, F. (2012). Social Media and Italian Universities: An Empirical Study on the Adoption and Use of Facebook, Twitter and YouTube. Available at: http://ssrn.com/abstract=1978393 or doi: https://doi.org/10.2139/ssrn.1978393.

  50. Manca, S., & Ranieri, M. (2016). “Yes for sharing, no for teaching!”: Social media in academic practices. The Internet and Higher Education, 29, 63–74.

    Google Scholar 

  51. Marciel, M., Cuevas, R., Banchs, A., Gonzalez, R., Traverso, S., Ahmed, M., & Azcorra, A. (2016). Understanding the detection of view fraud in video content portals. WWW '16 Proceedings of the 25th international conference on World Wide Web, 357–368.

  52. Meseguer-Martinez, A., Ros-Galvez, A., & Rosa-Garcia, A. (2017). Satisfaction with online teaching videos: A quantitative approach. Innovations in Education and Teaching International, 54(1), 62–67.

    Google Scholar 

  53. Moed, H. F. (2017). A critical comparative analysis of five world university rankings. Scientometrics, 110(2), 967–990.

    Google Scholar 

  54. Moran, M., Seaman, J., & Tinti-kane, H. (2011). Teaching, learning, and sharing: How today’s higher education faculty use social media. Research report published by Pearson, The Babson Survey Research Group, and Converseon. Available at: http://www3.babson.edu/ESHIP/research-publications/upload/Teaching_Learning_and_Sharing.pdf.

  55. Oh, S., Baek, H., & Ahn, J. (2017). Predictive value of video-sharing behavior: Sharing of movie trailers and box-office revenue. Internet Research, 27(3), 691–708.

    Google Scholar 

  56. Olcay, G. A., & Bulu, M. (2016). Is measuring the knowledge creation of universities possible? A review of university rankings. Technological Forecasting and Social Change, forthcoming.

  57. Pan, X., Yan, E., & Hua, W. (2016). Science communication and dissemination in different cultures: An analysis of the audience for TED videos in China and abroad. Journal of the Association for Information Science and Technology, 67(6), 1473–1486.

    Google Scholar 

  58. Pathak, B. K. (2016). Emerging online educational models and the transformation of traditional universities. Electronic Markets, 26(4), 315–321.

    Google Scholar 

  59. Piro, F. N., Hovdhaugen, E., Elken, M., Sivertsen, G., Benner, M., & Stensaker, B. (2014). Nordiske universiteter og internasjonale universitetsrangeringer: Hva forklarer nordiske plasseringer og hvordan forholder universitetene seg til rangeringene? NIFU rapport 25/2014. Oslo: NIFU.

    Google Scholar 

  60. Priem, J., & Hemminger, B. M. (2010). Scientometrics 2.0: New metrics of scholarly impact on the social Web. First Monday, 15(7).

  61. Priem, J., Piwowar, H. A., & Hemminger, B. M. (2012). Altmetrics in the wild: Using social media to explore scholarly impact. arXiv preprint arXiv:1203.4745.

  62. Ratkiewicz, J., Conover, M., Meiss, M. R., Gonçalves, B., Flammini, A., & Menczer, F. (2011). Detecting and tracking political abuse in social media, Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, 297–304.

  63. Ravenscroft, J., Liakata, M., Clare, A., & Duma, D. (2017). Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements. PLoS One, 12(3), e0173152.

    Google Scholar 

  64. Rosenthal, S. (2017). Motivations to seek science videos on YouTube: Free-choice learning in a connected society. International Journal of Science Education, Part B, 1–18.

  65. Safón, V. (2013). What do global university rankings really measure? The search for the X factor and the X entity. Scientometrics, 97(2), 223–244.

    Google Scholar 

  66. Saisana, M., d’Hombres, B., & Saltelli, A. (2011). Rickety numbers: Volatility of university rankings and policy implications. Research Policy, 40(1), 165–177.

    Google Scholar 

  67. Savin, N. E. (1980). The Bonferroni and the Scheffe multiple comparison procedures. The Review of Economic Studies, 47(1), 255–273.

    Google Scholar 

  68. Simpson, W., & Greenfield, H. (2009). IPTV and internet video: Expanding the reach of television broadcasting (2nd ed.). New York and London: Focal Press.

    Google Scholar 

  69. Statisticbrain (2016). YouTube company statistics. Available at: http://www.statisticbrain.com/youtube-statistics

  70. Sugimoto, C. R., Thelwall, M., Larivière, V., Tsou, A., Mongeon, P., & Macaluso, B. (2013). Scientists popularizing science: Characteristics and impact of TED talk presenters. PLoS One, 8(4), e62403.

    Google Scholar 

  71. Susarla, A., Oh, J. H., & Tan, Y. (2012). Social networks and the diffusion of user-generated content: Evidence from YouTube. Information Systems Research, 23(1), 23–41.

    Google Scholar 

  72. Szabo, G., & Huberman, B. A. (2010). Predicting the popularity of online content. Communications of the ACM, 53(8), 80–88.

    Google Scholar 

  73. Szentirmai, L., & Radács, L. (2013). World university rankings qualify teaching and primarily research. ICETA 2013, 11th IEEE International Conference on Emerging eLearning Technologies and Applications, 369–374.

  74. Thelwall, M., Kousha, K., Weller, K., & Puschmann, C. (2012). Chapter 9. Assessing the impact of online academic videos. In G. Widén & K. Holmberg (Eds.), Social information research (library and information science, volume 5) (pp. 195–213). Emerald Group Publishing Limited.

  75. Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PLoS One, 8(5), e64841.

    Google Scholar 

  76. Thoma, B., Sanders, J. L., Lin, M., Paterson, Q. S., Steeg, J., & Chan, T. M. (2015). The social media index: Measuring the impact of emergency medicine and critical care websites. Western Journal of Emergency Medicine, 16(2), 242–249.

    Google Scholar 

  77. Times Higher Education, THE (2015). Available at: https://www.timeshighereducation.com/world-university-rankings/2016

  78. Toven-Lindsey, B., Rhoads, R. A., & Lozano, J. B. (2015). Virtually unlimited classrooms: Pedagogical practices in massive open online courses. The Internet and Higher Education, 24, 1–12.

    Google Scholar 

  79. Trzcinski, T., & Rokita, P. (2017). Predicting popularity of online videos using support vector regression. IEEE Transactions on Multimedia, 99, 1–1.

    Google Scholar 

  80. Tseng, C. H., & Huang, T. L. (2016). Internet advertising video facilitating health communication: Narrative and emotional perspectives. Internet Research, 26(1), 236–264.

    Google Scholar 

  81. Vazquez-Cano, E. (2013). El videoartículo: nuevo formato de divulgación en revistas científicas y su integración en MOOCs. Comunicar: Revista Científica de Comunicación y Educación, 21(41), 83–91.

    Google Scholar 

  82. Veletsianos, G., & Kimmons, R. (2016). Scholars in an increasingly open and digital world: How do education professors and students use twitter? The Internet and Higher Education, 30, 1–10.

    Google Scholar 

  83. Waldrop, M. (2013). Campus 2.0. Nature, 495(7440), 160–163.

    Google Scholar 

  84. Welbourne, D. J., & Grant, W. J. (2016). Science communication on YouTube: Factors that affect channel and video popularity. Public Understanding of Science, 25(6), 706–718.

    Google Scholar 

  85. Xiao, C., Xue, Y., Li, Z., Luo, X., & Qin, Z. (2015). Measuring user influence based on multiple metrics on YouTube. Algorithms and Programming (PAAP), 2015 Seventh International Symposium on Parallel Architectures, 177–182.

  86. Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75(10), 6035–6058.

    Google Scholar 

Download references

Acknowledgements

Alfonso Rosa-Garcia acknowledges support from project ECO2016-76178-P from the Spanish Ministry of Economy, Industry and Competitiveness.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ros-Galvez.

Additional information

Responsible Editor: Jingzhi Guo

Electronic supplementary material

Appendix A

(DOCX 33 kb)

Appendix B

(DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meseguer-Martinez, A., Ros-Galvez, A., Rosa-Garcia, A. et al. Online video impact of world class universities. Electron Markets 29, 519–532 (2019). https://doi.org/10.1007/s12525-018-0315-4

Download citation

Keywords

  • Online video
  • World class universities
  • Impact
  • H-index
  • Altmetrics
  • Rankings

JEL classification

  • A20
  • I20