Electronic Markets

, Volume 29, Issue 1, pp 107–123 | Cite as

Smart services in healthcare: A risk-benefit-analysis of pay-as-you-live services from customer perspective in Germany

  • Rouven-B. WiegardEmail author
  • Michael H. Breitner
Research Paper
Part of the following topical collections:
  1. Special Issue on "Smart Services: The move to customer-orientation"


The recent boom in wearable technologies generates enormous vital data sets, which are the ideal starting point for new service offers by Big Data Analytics. In a Pay-As-You-Live (PAYL) service, insured track activities, transfer current data on the lifestyles of users, who receive rewards from their insurance companies. The aim of this study is to investigate the readiness of customers to adopt PAYL services using wearable technology by comparing perceived privacy risks and perceived benefits. The research model is developed on a basis of a literature review and expert interviews. By conducting an online survey involving 353 participants, a structural equation modelling approach is used to test the research model. The results show that current privacy risk factors dominate the perceived value of an individual to use PAYL services. Insurance companies, service providers and manufacturers of wearables must therefore primarily work together and offer solutions for greater data security and data protection before focusing on gamification and functional congruence.


Pay-As-You-Live service Wearable technologies perceived privacy risk perceived benefit intention to use 

JEL Classification



  1. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.Google Scholar
  2. Allmendinger, G., & Lombreglia, R. (2005). Four strategies for the age of smart services. Harvard Business Review, 83(10), 131.Google Scholar
  3. Alt, R. (2016). Electronic Markets on customer-orientation. Electronic Markets, 26(3), 195–198.Google Scholar
  4. Anderson, C. L., & Agarwal, R. (2010). Practicing Safe Computing: A multimethod empirical examination of home computer user behavioral intentions. MIS Quarterly, 34(3), 613–643.Google Scholar
  5. Angst, C. M., & Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy concerns: The elaboration likelihood model and individual persuasion. MIS Quarterly, 33(2), 339–370.Google Scholar
  6. Bauer, W. (2015). Digitalisierung und Dienstleistungen als Innovationstreiber für die Wirtschaft. Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, Stuttgart. Accessed 16 Jan 2017.
  7. Berglund, M. E., Duvall, J., & Dunne, L. E. (2016). A survey of the historical scope and current trends of wearable technology applications. In Proceedings of the ACM International Symposium on Wearable Computers, pp. 40–43.Google Scholar
  8. Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28, 229–254.Google Scholar
  9. BITKOM (2015). Zukunft der Consumer Electronics – 2015 Marktentwicklung, Schlüsseltrends, Mediennutzung Konsumentenverhalten, Neue Technologien. Accessed 27 Sept 2016.
  10. Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., & Papasratorn, B. (2012). Factors influencing the Thai elderly intention to use smartphone for e-Health services. In IEEE Symposium on Humanities, Science and Engineering Research, pp. 479–483.Google Scholar
  11. Chen, C. F. (2008). Investigating structural relationships between service quality, perceived value, satisfaction, and behavioral intentions for air passengers: Evidence from Taiwan. Transportation Research Part A: Policy and Practice, 42(4), 709–717.Google Scholar
  12. Chen, C.-C. & Shih, H.-S. (2014). A study of the acceptance of wearable technology for consumers: An analytical network process perspective, Proceedings of the Thirteenth International Symposium on the Analytic Hierarchy/Network Process, ISAHP 2014, 1–5.Google Scholar
  13. Chin, W. W. (1998). Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 29(3), viixvi.Google Scholar
  14. Ching, K. W., & Singh, M. M. (2016). Wearable technology devices security and privacy vulnerability analysis. International Journal of Network Security and its Applications, 8(3), 19–30.Google Scholar
  15. CSS Insight (2016). Wearable momentum continues. Accessed 2 Sept 2016.
  16. Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, procedural fairness, and impersonal trust: An empirical investigation. Organization Science, 10(1), 104–115. Scholar
  17. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of Information Technology . MIS quarterly, 13(3), 319–340.Google Scholar
  18. Degirmenci, K., Guhr, N., & Breitner, M. H. (2013). Mobile applications and access to personal information: A discussion of users' privacy concerns. In International Conference on Information Systems, pp. 15–18.Google Scholar
  19. Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203–1218.Google Scholar
  20. Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80.Google Scholar
  21. Dinev, T., Xu, H., Smith, J. H., & Hart, P. (2013). Information privacy and correlates: an empirical attempt to bridge and distinguish privacy-related concepts. European Journal of Information Systems, 22(3), 295–316.Google Scholar
  22. Eduard, M. N. (2007). Development Directions Of Services And Products In Insurances. Revista Tinerilor Economisti (The Young Economists Journal), 1(8), 89–92.Google Scholar
  23. Ernst & Young (2015). Introducing "Pay As You Live" (PAYL) Insurance: Insurance that rewards a healthier lifestyle.$FILE/EY-introducing-pay-as-you-live-payl-insurance.pdf. Accessed 29 June 2016.
  24. Ernst, C. P., & Ernst, A. (2016). The Influence of Privacy Risk on Smartwatch Usage. In: Americas Conference on Information Systems.Google Scholar
  25. Fishbein, M. (1979). A theory of reasoned action: some applications and implications. In H. Howe, & M. Page (Eds.), Nebraska Symposium on Motivation (pp. 65–116). Lincoln: University of Nebraska Press.Google Scholar
  26. Fornell, C., & Bookstein, F. L. (1982). Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. Journal of Marketing Research, 19(4), 440–452.Google Scholar
  27. Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 115(9), 1704–1723.Google Scholar
  28. Gefen, D., Rigdon, E. E., & Straub, D. (2011). An Update and Extension to SEM Guidlines for Administrative and Social Science Research. MIS Quarterly, 35(2), iii–xiv.Google Scholar
  29. Gu, Z., Wei, J., & Xu, F. (2015). An Empirical Study on Factors Influencing Consumers' Initial Trust in Wearable Commerce. The Journal of Computer Information Systems, 56(1), 79–85.Google Scholar
  30. Hew, J. J., Lee, V. H., Ooi, K. B., & Wei, J. (2015). What catalyses mobile apps usage intention: an empirical analysis. Industrial Management & Data Systems, 115(7), 1269–1291.Google Scholar
  31. Johnston, A. C., & Warkentin, M. (2010). Fear Appeals and Information Security Behaviors: An Empirical Study. MIS Quarterly, 34(3), 549–566.Google Scholar
  32. Kagermann, H., Riemensperger, F., Hoke, D., Helbig, J. Schuh, G., Scheer, A. W., Spath, D., ... & Schweer, D. (2014). Smart Service Welt: Umsetzungsempfehlungen für das Zukunftsprojekt Internetbasierte Dienste für die Wirtschaft. Berlin: acatech. Accessed 7 Jan 2017.
  33. Kim, D. J. (2005). An Investigation on the New Mobile Service/Technology Adoption. In AMCIS 2005 Proceedings, p. 326.Google Scholar
  34. Kim, K. J., & Shin, D. H. (2015). An acceptance model for smart watches: implications for the adoption of future wearable technology. Internet Research, 25(4), 527–554.Google Scholar
  35. Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111–126.Google Scholar
  36. Kolany-Raiser, B. (2016). Der Verbraucher als Datenlieferant. Unter Mitarbeit von Consumer Association of North Rhine-Westphalia. Beiträge zur Verbraucherforschung, Verbraucherzentrale NRW. Hg. v. Bala, C und Schuldzinski, W.Google Scholar
  37. Lee, A. S., & Baskerville, R. L. (2003). Generalizing generalizability in information systems research. Information Systems Research, 14(3), 221–243.Google Scholar
  38. Leimeister, J. M., Österle, H., & Alter, S. (2014). Digital services for consumers. Electronic Markets, 24(4), 255.Google Scholar
  39. Li, H., Wu, J., Gao, Y., & Shi, Y. (2016). Examining individuals’ adoption of healthcare wearable devices: An empirical study from privacy calculus perspective. International Journal of Medical Informatics, 88, 8–17.Google Scholar
  40. Limayem, M., & Hirt, S. G. (2003). Force of habit and information systems usage: Theory and initial validation. Journal of the Association for Information Systems, 4(1), 3.Google Scholar
  41. Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336–355.Google Scholar
  42. Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken (p. 11). Beltz Deutscher Studien Verlag: Weinheim.Google Scholar
  43. McAdams, E., Krupaviciute, A., Gehin, C., Grenier, E., Massot, B., Dittmar, A., & Fayn, J. (2011). Wearable sensor systems: The challenges. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 3648–3651.Google Scholar
  44. Nürnberg, V. (2015). E-Health und M(obile)- Health: Chancen und Risiken-das Aus für die Solidargemeinschaft. Zeitschrift für Versicherungswesen: ZfV, 66(8), 246–250.Google Scholar
  45. Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59–74.Google Scholar
  46. Pfeiffer, J., von Entress-Fuersteneck, M., Urbach, N., & Buchwald, A. (2016). Quantify-Me: Consumer Acceptance of Wearable Self-Tracking Devices. In Proceedings of the European Conference on Information Systems.Google Scholar
  47. Polites, G. L., Roberts, N., & Thatcher, J. (2012). Conceptualizing Models Using Multidimensional Constructs: A Review and Guidelines for Their Use. European Journal of Information Systems, 21(1), 22–48.Google Scholar
  48. PWC (2016). The Wearable Life 2.0 Connected living in a wearable world. Consumer Intelligence Series, pp. 1–23.Google Scholar
  49. Rogers, E. M. (1995). Diffusion of innovations, 4th Edn. New York: Free Press.Google Scholar
  50. Rundshagen, M. (2015). Versicherungsrisiken leichter bewerten dank medizinischer Innovation. Zeitschrift für Versicherungswesen: ZfV, 17, 560–562.Google Scholar
  51. Schröder, S., & Schloss, M. (2015). Zwischen Self Tracking und Pay as you live: Die Herausforderungen neuer digitaler Geschäftsmodelle. Accessed 15 Jan 2017.
  52. Siponen, M. T., & Vance, A. O. (2010). Neutralization: New Insights into the Problem of Employee Systems Security Policy Violations. MIS Quarterly, 34(3), 487–502.Google Scholar
  53. Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: measuring individuals’ concerns about organizational practices. MIS quarterly, 20(2), 167–196.Google Scholar
  54. Stewart, K. A., & Segars, A. H. (2002). An empirical examination of the concern for information privacy instrument. Information Systems Research, 13(1), 36–49.Google Scholar
  55. Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. The Communications of the Association for Information Systems, 13(1), 63.Google Scholar
  56. Sultan, N. (2015). Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. International Journal of Information Management, 35(5), 521–526.Google Scholar
  57. Sun, H. (2012). Understanding User Revisions when Using Information System Features: Adaptive System Use and Triggers. MIS Quarterly, 36(2), 453–478.Google Scholar
  58. Tao, D. (2009). Intention to use and actual use of electronic information resources: Further exploring Technology Acceptance Model. In AMIA Annual Symposium Proceedings, pp. 629–633.Google Scholar
  59. Trommsdorff, V. (2004). Konsumentenverhalten (6th ed.). Stuttgart: Kohlhammer.Google Scholar
  60. Turhan, G. (2013). An assessment towards the acceptance of wearable technology to consumers in Turkey: the application to smart bra and t-shirt products. Journal of the Textile Institute, 104(4), 375–395.Google Scholar
  61. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.Google Scholar
  62. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178.Google Scholar
  63. Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii.Google Scholar
  64. Wei, J. (2014). How Wearables Intersect with the Cloud and the Internet of Things: Considerations for the developers of wearables. IEEE Consumer Electronics Magazine, 3(3), 53–56.Google Scholar
  65. Wetzels, M., Odekerken-Schroder, G., & van Oppen, C. (2009). Using PLS path modeling for assessing hierachical construct models: guidlines and empirical illustration. MIS Quarterly, 33(1), 177–195.Google Scholar
  66. Xu, H., Dinev, T., Smith, H. J., & Hart, P. (2008). Examining the formation of individual's privacy concerns: Toward an integrative view. In Proceedings of the International Conference on Information Systems, p. 6.Google Scholar
  67. Xu, H., Teo, H. H., Tan, B. C., & Agarwal, R. (2009). The role of push-pull technology in privacy calculus: the case of location-based services. Journal of Management Information Systems, 26(3), 135–174.Google Scholar
  68. Xu, H., Gupta, S., Rosson, M. B., & Carroll, J. M. (2012). Measuring mobile users’ concerns for information privacy. International Conference on Information Systems, ICIS 2012 3, 2278–2293.Google Scholar
  69. Yang, H., Yu, J., Zo, H., & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256–269.Google Scholar
  70. Yoon, H., Shin, D. H., & Kim, H. (2015). Health information tailoring and data privacy in a smart watch as a preventive health tool. In M. Kurosu (Ed.), Human-computer interaction: users and Contexts. HCI 2015. Lecture Notes in Computer Science, 9171 (pp. 537–548). Cham: Springer.Google Scholar
  71. Yuan, S., Ma, W., Kanthawala, S., & Peng, W. (2015). Keep using my health apps: Discover users' perception of health and fitness apps with the UTAUT2 model. Telemedicine and e-Health., 21(9), 735–741.Google Scholar
  72. Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. The Journal of marketing., 52, 2–22.Google Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2017

Authors and Affiliations

  1. 1.Information Systems InstituteLeibniz Universität HannoverHannoverGermany

Personalised recommendations