Electronic Markets

, Volume 27, Issue 4, pp 307–328 | Cite as

Customer lifetime network value: customer valuation in the context of network effects

  • Miriam Däs
  • Julia Klier
  • Mathias Klier
  • Georg Lindner
  • Lea Thiel
Research Paper


Nowadays customers are increasingly connected and extensively interact with each other using technology-enabled media like online social networks. Hence, customers are frequently exposed to social influence when making purchase decisions. However, established approaches for customer valuation mostly neglect network effects based on social influence. This leads to a misallocation of resources. Following a design-oriented approach, this paper develops a model for customer valuation referred to as the customer lifetime network value (CLNV) incorporating an integrated network perspective. By considering the customers’ net contribution to the network, the CLNV reallocates values between customers based on social influence. Inspired by common prestige- and eigenvector-related centrality measures it incorporates social influence among all degrees of separation acknowledging its viral spread. Using a real-world dataset, we demonstrate the practicable applicability of the CLNV to determine individual customers’ value.


Customer valuation Customer lifetime value Social influence Network effects 

JEL classification



  1. Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Social Networks, 25(3), 211–230.CrossRefGoogle Scholar
  2. Algesheimer, R., & von Wangenheim, F. (2006). A network based approach to customer equity management. Journal of Relationship Marketing, 5(1), 39–57.CrossRefGoogle Scholar
  3. Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social networks. Science, 337(6092), 337–341.CrossRefGoogle Scholar
  4. Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 4(3), 291–295.CrossRefGoogle Scholar
  5. Asch, S. E. (1951). Effects of group pressure upon the modification and distortion of judgements. In H. Guetzkow (Ed.), Groups, Leadership and men. Research in human relations (pp. 222–236). Oxford: Carnegie Press.Google Scholar
  6. Bampo, M., Ewing, M. T., Mather, D. R., Stewart, D., & Wallace, M. (2008). The effects of the social structure of digital networks on viral marketing performance. Information Systems Research, 19(3), 273–290.CrossRefGoogle Scholar
  7. Benevenuto, F., Rodrigues, T., Cha, M., & Almeida, V. (2009). Characterizing user behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement (pp. 49–62). Chicago.Google Scholar
  8. Berger, J. (2014). Word of mouth and interpersonal communication: a review and directions for future research. Journal of Consumer Psychology, 24(4), 586–607.CrossRefGoogle Scholar
  9. Berger, P. D., & Nasr, N. I. (1998). Customer lifetime value: marketing models and applications. Journal of Interactive Marketing, 12(1), 17–30.CrossRefGoogle Scholar
  10. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113–120.CrossRefGoogle Scholar
  11. Bond, R. M., Fariss, C. J., Jones, J. J., Di Kramer, A., Marlow, C., Settle, J. E., & Fowler, J. H. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295–298.CrossRefGoogle Scholar
  12. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  13. Butler, R. A. (2017). How millennial consumers make buying decisions. Accessed 03 Feb 2017.
  14. Chen, Y., & Xie, J. (2008). Online Consumer review: word-of-mouth as a new element of marketing communication mix. Management Science, 54(3), 477–491.CrossRefGoogle Scholar
  15. Cheung, C. M., & Lee, M. K. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24–30.CrossRefGoogle Scholar
  16. de Valck, K., van Bruggen, G. H., & Wierenga, B. (2009). Virtual communities: a marketing perspective. Decision Support Systems, 47(3), 185–203.CrossRefGoogle Scholar
  17. Domingos, P., & Richardson, M. (2001). Mining the network value of customers. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 57–66). San Francisco.Google Scholar
  18. Dwyer, F. R. (1997). Customer lifetime valuation to support marketing decision making. Journal of Interactive Marketing, 11(4), 6–13.Google Scholar
  19. Eccleston, D., & Griseri, L. (2008). How does web 2.0 stretch traditional influencing patterns? International Journal of Market Research, 50(5), 591–616.CrossRefGoogle Scholar
  20. eMarketer. (2014). Worldwide internet, social network and mobile users: Q2 2014 complete forecast. Accessed 03 Feb 2017.
  21. eMarketer. (2016). Number of social network users worldwide from 2010 to 2020. Accessed 03 Feb 2017.
  22. Erchul, W. P., & Raven, B. H. (1997). Social power in School consultation: a contemporary view of French and Raven's bases of power model. Journal of School Psychology, 35(2), 137–171.CrossRefGoogle Scholar
  23. Freeman, L. C. (1979). Centrality in social networks: conceptual clarification. Social Networks, 1(3), 215–239.CrossRefGoogle Scholar
  24. Friedman, T. L. (2013). It’s a 401(k) World. Accessed 03 Feb 2017.
  25. Gamon, M., Aue, A., Corston-Oliver, S., & Ringger, E. (2005). Pulse: mining customer opinions from free text. In A. F. Famili, J. N. Kok, J. M. Peña, A. Siebes, & A. Feelders (Eds.), Lecture notes in computer science. Advances in intelligent data analysis VI (pp. 121–132). Berlin: Springer.Google Scholar
  26. Ganley, D., & Lampe, C. (2009). The ties that bind: Social network principles in online communities. Decision Support Systems, 47(3), 266–274.CrossRefGoogle Scholar
  27. Gartner Group. (2015). Gartner CMO Spend Survey 2015–2016: digital marketing comes of age. Accessed 03 Feb 2017.
  28. Gladwell, M. (2000). The tipping point: how little things can make a big difference. Boston: Little, Brown and Company.Google Scholar
  29. Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The role of hubs in the adoption process. Journal of Marketing, 73(2), 1–13.CrossRefGoogle Scholar
  30. Golub, G. H., & van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore: JHU Press.Google Scholar
  31. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.CrossRefGoogle Scholar
  32. Granovetter, M. S. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443.CrossRefGoogle Scholar
  33. Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design Science research for maximum impact. MIS Quarterly, 37(2), 337–355.CrossRefGoogle Scholar
  34. Gruzd, A., & Wellman, B. (2014). Networked influence in social media: introduction to the special issue. American Behavioral Scientist, 58(10), 1251–1259.CrossRefGoogle Scholar
  35. Guetzkow, H. (Ed.). (1951). Groups, leadership and men: research in human relations. Oxford: Carnegie Press.Google Scholar
  36. Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., et al. (2006). Modeling customer lifetime value. Journal of Service Research, 9(2), 139–155.CrossRefGoogle Scholar
  37. Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings of the 7th Python in Science Conference (pp. 11–15). Pasadena.Google Scholar
  38. Harary, F., Norman, R. Z., & Cartwright, D. (1965). Structural models: an introduction to the theory of directed graphs. New York: John Wiley & Sons.Google Scholar
  39. Heidemann, J., Klier, M., & Probst, F. (2010). Identifying key users in online social networks: A PageRank based approach. In Proceedings of the 31st International Conference on Information Systems. St. Louis.Google Scholar
  40. Helsen, K., & Schmittlein, D. C. (1993). Analyzing duration times in marketing: evidence for the effectiveness of hazard rate models. Marketing Science, 12(4), 395–414.CrossRefGoogle Scholar
  41. Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-Diagnosticity perspective. Journal of Consumer Research, 17(4), 454–462.CrossRefGoogle Scholar
  42. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in information systems research. MIS Quarterly, 28(1), 75–105.CrossRefGoogle Scholar
  43. Hinz, O., Schulze, C., & Takac, C. (2014). New product adoption in social networks: why direction matters. Journal of Business Research, 67(1), 2836–2844.CrossRefGoogle Scholar
  44. Hinz, O., Skiera, B., Barrot, C., & Becker, J. U. (2011). Seeding strategies for viral marketing: an empirical comparison. Journal of Marketing, 75(6), 55–71.CrossRefGoogle Scholar
  45. Hogan, J. E., Lemon, K. N., & Libai, B. (2003). What is the true value of a lost customer? Journal of Service Research, 5(3), 196–208.CrossRefGoogle Scholar
  46. Hogan, J. E., Lemon, K. N., & Libai, B. (2004). Quantifying the ripple: word-of-mouth and advertising effectiveness. Journal of Advertising Research, 44(3), 271–280.CrossRefGoogle Scholar
  47. Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 168–177). Seattle.Google Scholar
  48. ITU. (2016). ICT Facts and Figures 2016. Accessed 03 Feb 2017.
  49. Iyengar, R., Van den Bulte, C., & Choi, J. (2011a). Distinguishing between drivers of social contagion: insights from combining social network and co-location data. Philadelphia: Working Paper at the Wharton School of the University of Pennsylvania.Google Scholar
  50. Iyengar, R., Van den Bulte, C., & Valente, T. W. (2011b). Opinion Leadership and social contagion in new product diffusion. Marketing Science, 30(2), 195–212.CrossRefGoogle Scholar
  51. Jain, D., & Singh, S. S. (2002). Customer lifetime value research in marketing: a review and future directions. Journal of Interactive Marketing, 16(2), 34–46.CrossRefGoogle Scholar
  52. Jain, D. C., & Vilcassim, N. J. (1991). Investigating household purchase timing decisions: a conditional hazard function approach. Marketing Science, 10(1), 1–23.CrossRefGoogle Scholar
  53. Kane, G. C., Alavi, M., Labianca, G., & Borgatti, S. (2014). What’s different about social media networks? A framework and research agenda. MIS Quarterly, 38(1), 275–304.CrossRefGoogle Scholar
  54. Katona, Z., Zubcsek, P. P., & Sarvary, M. (2011). Network effects and personal influences: the diffusion of an online social network. Journal of Marketing Research, 48(3), 425–443.CrossRefGoogle Scholar
  55. Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.CrossRefGoogle Scholar
  56. Katz, E., & Lazarsfeld, P. F. (1955). Personal influence: the part played by people in the flow of mass Communications. New York: The Free Press.Google Scholar
  57. Katz, M. L., & Shapiro, C. (1994). Systems competition and network effects. Journal of Economic Perspectives, 8(2), 93–115.CrossRefGoogle Scholar
  58. Kiss, C., & Bichler, M. (2008). Identification of influencers — Measuring influence in customer networks. Decision Support Systems, 46(1), 233–253.CrossRefGoogle Scholar
  59. Klier, J., Klier, M., Probst, F., & Thiel, L. (2014). Customer lifetime network value. In Proceedings of the 35th International Conference on Information Systems (pp. 1–21). Auckland.Google Scholar
  60. Kotler, P., & Armstrong, G. (1996). Principles of marketing (7th ed.). Englewood Cliffs: Prentice Hall.Google Scholar
  61. Kumar, V., Aksoy, L., Donkers, B., Venkatesan, R., Wiesel, T., & Tillmanns, S. (2010a). Undervalued or overvalued customers: capturing Total customer engagement value. Journal of Service Research, 13(3), 297–310.CrossRefGoogle Scholar
  62. Kumar, V., Bhaskaran, V., Mirchandani, R., & Shah, M. (2013). Creating a measurable social media marketing strategy: increasing the value and ROI of intangibles and tangibles for hokey pokey. Marketing Science, 32(2), 194–212.CrossRefGoogle Scholar
  63. Kumar, V., Petersen, J. A., & Leone, R. P. (2007). How valuable is word of mouth? Harvard Business Review, 85(10), 139–148.Google Scholar
  64. Kumar, V., Petersen, J. A., & Leone, R. P. (2010b). Driving profitability by encouraging customer referrals: who, when, and how. Journal of Marketing, 74(5), 1–17.CrossRefGoogle Scholar
  65. Kumar, V., Ramani, G., & Bohling, T. (2004). Customer lifetime value approaches and best practice Applications. Journal of Interactive Marketing, 18(3), 60–72.CrossRefGoogle Scholar
  66. Kumar, V., Venkatesan, R., Bohling, T., & Beckmann, D. (2008). The power of CLV: managing customer lifetime value at IBM. Marketing Science, 27(4), 585–599.CrossRefGoogle Scholar
  67. Lee, J., Lee, J., & Feick, L. (2006). Incorporating word-of-mouth effects in estimating customer lifetime value. Journal of Database Marketing & Customer Strategy Management, 14(1), 29–39.CrossRefGoogle Scholar
  68. Libai, B., Muller, E., & Peres, R. (2013). Decomposing the value of word-of-mouth seeding programs: accelerations versus expansion. Journal of Marketing Research, 50(2), 161–176.CrossRefGoogle Scholar
  69. Lin, F., & Cohen, W. W. (2010). Power iteration clustering. In Proceedings of the 27th International Conference on Machine Learning (ICML) (pp. 655–662). Haifa.Google Scholar
  70. Lis, B., & Neßler, C. (2014). Electronic word of mouth. Business & Information Systems Engineering, 6(1), 63–65.CrossRefGoogle Scholar
  71. Liu, X., He, Q., Tian, Y., Lee, W.-C., McPherson, J., & Han, J. (2012). Event-based social networks: linking the online and offline social worlds. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1032–1040). Beijing.Google Scholar
  72. Malthouse, E. C., & Blattberg, R. C. (2005). Can we predict customer lifetime value? Journal of Interactive Marketing, 19(1), 2–16.CrossRefGoogle Scholar
  73. Malthouse, E. C., Haenlein, M., Skiera, B., Wege, E., & Zhang, M. (2013). Managing customer relationships in the social media era: introducing the social CRM house. Journal of Interactive Marketing, 27(4), 270–280.CrossRefGoogle Scholar
  74. McAlexander, J. H., Schouten, J. W., & Koenig, H. F. (2002). Building brand community. Journal of Marketing, 66(1), 38–54.CrossRefGoogle Scholar
  75. Moon, S., Bergey, P. K., & Iacobucci, D. (2010). Dynamic effects among movie ratings, movie revenues, and viewer satisfaction. Journal of Marketing, 74(1), 108–121.CrossRefGoogle Scholar
  76. Mtibaa, A., May, M., Diot, C., & Ammar, M. (2010). PeopleRank: social opportunistic forwarding. In Proceedings of the 29th Conference on Information Communications (pp. 1–5). San Diego.Google Scholar
  77. Nahon, K., & Hemsley, J. (2013). Going Viral. Cambridge: Polity Press.Google Scholar
  78. Nielsen (2015). Word-of-mouth recommendations remain the most credible. Accessed 03 Feb 2017.
  79. Nitzan, I., & Libai, B. (2011). Social effects on customer retention. Journal of Marketing, 75(6), 24–38.CrossRefGoogle Scholar
  80. Oestreicher-Singer, G., Libai, B., Sivan, L., Carmi, E., & Yassin, O. (2013). The network value of products. Journal of Marketing, 77(3), 1–14.CrossRefGoogle Scholar
  81. Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: bringing order to the web. Stanford: Technical Report, Stanford InfoLab.Google Scholar
  82. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.CrossRefGoogle Scholar
  83. Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–78.CrossRefGoogle Scholar
  84. Probst, F., Grosswiele, L., & Pfleger, R. (2013). Who will lead and who will follow: identifying influential users in online social networks: a critical review and future research directions. Business & Information Systems Engineering, 5(3), 179–193.CrossRefGoogle Scholar
  85. Rossmann, A., Ranjan, K. R., & Sugathan, P. (2016). Drivers of user engagement in eWoM communication. Journal of Services Marketing, 30(5), 541–553.CrossRefGoogle Scholar
  86. Scarpi, D., Pizzi, G., & Visentin, M. (2014). Shopping for fun or shopping to buy: is it different online and offline? Journal of Retailing and Consumer Services, 21(3), 258–267.CrossRefGoogle Scholar
  87. Schmitt, P., Skiera, B., & Van den Bulte, C. (2011). Referral programs and customer value. Journal of Marketing, 75(1), 46–59.CrossRefGoogle Scholar
  88. Singh, S. S., & Jain, D. C. (2013). Measuring customer lifetime value: models and analysis. INSEAD Working Paper(2013/27/MKT).Google Scholar
  89. Soares, M. A., & Pinho, C. J. (2014). Advertising in online social networks: the role of perceived enjoyment and social influence. Journal of Research in Interactive Marketing, 8(3), 245–263.CrossRefGoogle Scholar
  90. Solomon, M. (2015). The year of the millennial customer: is your customer experience ready? Accessed 03 Feb 2017.
  91. Tang, C., & Guo, L. (2015). Digging for gold with a simple tool: validating text mining in studying electronic word-of-mouth (eWOM) communication. Marketing Letters, 26(1), 67–80.CrossRefGoogle Scholar
  92. The CMO Survey. (2016). Driving toward the digital marketing organization. Accessed 03 Feb 2017.
  93. Trusov, M., Bodapati, A. V., & Bucklin, R. E. (2010). Determining influential users in Internet social networks. Journal of Marketing Research, 47(4), 643–658.CrossRefGoogle Scholar
  94. Van den Bulte, C., & Wuyts, S. (2007). Social networks and marketing. Relevant knowledge series. Cambridge: Marketing Science Institute.Google Scholar
  95. Venkatesan, R., & Kumar, V. (2004). A customer lifetime value framework for customer selection and resource allocation strategy. Journal of Marketing, 68(4), 106–125.CrossRefGoogle Scholar
  96. Verhoef, P. C., & Lemon, K. N. (2013). Successful customer value management: key lessons and emerging trends. European Management Journal, 31(1), 1–15.CrossRefGoogle Scholar
  97. Villanueva, J., Yoo, S., & Hanssens, D. M. (2008). The impact of marketing-induced versus word-of-mouth customer acquisition on customer equity growth. Journal of Marketing Research, 45(1), 48–59.CrossRefGoogle Scholar
  98. von Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social media analytics - an interdisciplinary approach and its implications for information systems. Business & Information Systems Engineering, 6(2), 89–96.CrossRefGoogle Scholar
  99. Wang, G., Jiang, W., Wu, J., & Xiong, Z. (2014). Fine-grained feature-based social influence evaluation in online social networks. IEEE Transactions on Parallel and Distributed Systems, 25(9), 2286–2296.CrossRefGoogle Scholar
  100. Wangenheim, F. v., & Bayón, T. (2007). The chain from customer satisfaction via word-of-mouth referrals to new customer acquisition. Journal of the Academy of Marketing Science, 35(2), 233–249.CrossRefGoogle Scholar
  101. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and Applications. Structural analysis in the social sciences (Vol. 8). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  102. Watts, D. J., & Dodds, P. S. (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research, 34(4), 441–458.CrossRefGoogle Scholar
  103. Weinberg, B. D., & Berger, P. D. (2011). Connected customer lifetime value: the impact of social media. Journal of Direct, Data and Digital Marketing Practice, 12(4), 328–344.CrossRefGoogle Scholar
  104. Wilson, C., Boe, B., Sala, A., Puttaswamy, K. P., & Zhao, B. Y. (2009, April). User interactions in social networks and their implications. In Proceedings of the 4th ACM European Conference on Computer Systems (pp. 205–218). Nuremberg.Google Scholar
  105. WOMMA. (2014). The State of WOMM. Accessed 03 Feb 2017.
  106. Zhang, Y., Zhou, J., & Cheng, J. (2011). Preference-based top-K influential nodes Mining in Social Networks. In Proceedings of the 2011 I.E. 10th International Conference on Trust, Security and Privacy in Computing and Communications (pp. 1512–1518). Changsha.Google Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2017

Authors and Affiliations

  • Miriam Däs
    • 1
  • Julia Klier
    • 1
  • Mathias Klier
    • 2
  • Georg Lindner
    • 1
  • Lea Thiel
    • 1
  1. 1.University of RegensburgRegensburgGermany
  2. 2.University of UlmUlmGermany

Personalised recommendations