Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-Art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. Retrieved from http://www.citeulike.org/group/22/article/171426.
Article
Google Scholar
Ahearne, M., Bhattacharya, C. B., & Gruen, T. (2005). Antecedents and consequences of customer-company identification: expanding the role of relationship marketing. The Journal of Applied Psychology, 90(3), 574–585. doi:10.1037/0021-9010.90.3.574.
Google Scholar
Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social networks. Science (New York, N.Y.), 337(6092), 337–341. doi:10.1126/science.1215842.
Google Scholar
Beane, T. P., & Ennis, D. M. (1987). Market segmentation: a review. European Journal of Marketing, 21(5), 20–42. doi:10.1108/EUM0000000004695.
Article
Google Scholar
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 106-132. doi:10.1016/j.knosys.2013.03.012.
Dewally, M., & Ederington, L. (2006). Reputation, certification, warranties, and information as remedies for seller-buyer information asymmetries: lessons from the online comic book market. The Journal of Business, 79(2), 693–729. doi:10.1086/499169.
Article
Google Scholar
Facebook.com. (2014). Accessing Your Facebook Info | Facebook Help Center. Retrieved February 01, 2014, from https://www.facebook.com/help/405183566203254/.
Fennell, G., Allenby, G. M., Yang, S., & Edwards, Y. (2003). The effectiveness of demographic and psychographic variables for explaining brand and product category use. Quantitative Marketing and Economics, 1(2), 223–244. doi:10.1023/A:1024686630821.
Article
Google Scholar
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251. doi:10.2307/1913827.
Article
Google Scholar
He, J., & Chu, W. W. (2010). A social network-based recommender system (SNRS). Data Mining for Social Network Data (12), 47–74. Springer. doi:10.1007/978-1-4419-6287-4.
Hinz, O., & Eckert, J. (2010). The impact of search and recommendation systems on sales in electronic commerce. Business & Information Systems Engineering, 2(2), 67–77. doi:10.1007/s12599-010-0092-x.
Article
Google Scholar
Hinz, O., Hann, I., & Spann, M. (2011). Price discrimination in E-commerce? An examination of dynamic pricing in name-your-own price markets. MIS Quarterly, 35(1), 81–98. Retrieved from http://dl.acm.org/citation.cfm?id=2017489.
Google Scholar
Huang, Z., Chung, W., & Chen, H. (2004). A graph model for E-commerce recommender systems. Journal of the American Society for Information Science and Technology, 55(3), 259–274. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/asi.10372/full.
Article
Google Scholar
Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: an introduction. Cambridge University Press.
Kass, R., & Finin, T. (1988). Modeling the user in natural language systems. Computational Linguistics, 14(3), 5–22.
Google Scholar
Kim, H.-N., Ji, A.-T., Ha, I., & Jo, G.-S. (2010). Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation. Electronic Commerce Research and Applications, 9(1), 73–83.
Article
Google Scholar
Li, Y.-M., Wu, C.-T., & Lai, C.-Y. (2013). A social recommender mechanism for e-commerce: combining similarity, trust, and relationship. Decision Support Systems, 55(3), 740–752. doi:10.1016/j.dss.2013.02.009.
Article
Google Scholar
McAlexander, J., Schouten, J., & Koenig, H. (2002). Building brand community. The Journal of Marketing, 66(1), 38–54. Retrieved from http://www.jstor.org/stable/10.2307/3203368.
Google Scholar
Montaner, M., López, B., & La Rosa, J. D. (2003). A taxonomy of recommender agents on the internet. Artificial Intelligence Review, 19, 285–330. Retrieved from http://www.springerlink.com/index/KK844421T5466K35.pdf.
Article
Google Scholar
Nelson, P. (1970). Information and consumer behavior. The Journal of Political Economy, 78(2), 311–329. Retrieved from http://www.jstor.org/stable/1830691.
Google Scholar
Pereira, R. (2000). Optimizing human-computer interaction for the electronic commerce environment. Journal of Electronic Commerce Research, 1(1), 23–44. Retrieved from http://www.csulb.edu/web/journals/jecr/issues/20001/paper3.pdf.
Google Scholar
Rashid, A. M., Karypis, G., & Riedl, J. (2008). Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explorations Newsletter, 10(2), 90–100.
Article
Google Scholar
Rodríguez, R. M., Espinilla, M., Sánchez, P. J., & Martínez-López, L. (2010). Using linguistic incomplete preference relations to cold start recommendations. Internet Research, 20(3), 296–315.
Google Scholar
Schafer, J., Konstan, J., & Riedl, J. (2001). E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5, 115–153. Retrieved from http://www.springerlink.com/index/r24285574675qu7v.pdf.
Article
Google Scholar
Spiekermann, S., Grossklags, J., & Berendt, B. (2001). E-privacy in 2nd generation E-commerce. In Proceedings of the 3rd ACM conference on Electronic Commerce - EC ’01 (pp. 38–47). New York, New York, USA: ACM Press. doi:10.1145/501158.501163.
Weng, L.-T., Xu, Y., Li, Y., & Nayak, R. (2008). Exploiting item taxonomy for solving cold-start problem in recommendation making. In Tools with Artificial Intelligence, 2008. ICTAI’08. 20th IEEE International Conference on (Vol. 2, pp. 113–120). IEEE.
Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: use, characteristics, and impact. MIS Quarterly, 31(1), 137–209. Retrieved from http://dl.acm.org/citation.cfm?id=2017335.
Google Scholar
Zeithaml, V. A. (1985). The New demographics and market fragmentation. Journal of Marketing, 49(3), 64–75. doi:10.2307/1251616.
Article
Google Scholar