SNA-based innovation trend analysis in software service networks

Abstract

Service networks can be considered to be open innovation systems. It has led to research on the structure of these networks, concentrating on the static network topology and its effect on innovation. However, the research misses the changes of network positions over time. In this paper, we examine the changes of nodes’ positions in a software service network. The software service network has been built from empirical data. In this network, a node represents a Software-as-a-Service (SaaS) service and a link denotes a re-use of existing software services through a new service. Our results suggest that: first, software services undergo life cycles in their network positions; second, some software services achieve to hub position in their life cycle while others a core position; and third, an innovation trend appears at service category level not just by a single service. These results imply that innovation studies should not only consider static network positions and topologies but also trends of changing positions within the network.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Albert, R., Jeong, H., & Barabási, A.-L. (1999). Diameter of the World-Wide Web. Nature, 401(6749), 130–131.

    Article  Google Scholar 

  2. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Review of Modern Physics, 74(1), 47–97.

    Article  Google Scholar 

  3. Baek, S., Kim, K., & Altmann, J. (2014). Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange. Proceedings of the 16th IEEE Conference on Business Informatics (CBI 2014).

  4. Barabási, A.-L. (2009). Scale-free networks: A decade and beyond. Science, 325(5939), 412–413.

    Article  Google Scholar 

  5. Basole, R. C., & Karla, J. (2011). On the evolution of mobile platform ecosystem structure and strategy. Business & Information Systems Engineering, 3(5), 313–322.

    Article  Google Scholar 

  6. Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.

    Article  Google Scholar 

  7. Burt, R. S. (1992). Structural Holes: The Social Structure on Competition. Press: Harvard Univ.

    Google Scholar 

  8. Campbell-Kelly, M. (2009). Historical reflections: The rise, fall, and resurrection of software as a service. Communications of the ACM, 52(5), 28–30.

    Article  Google Scholar 

  9. Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting from technology. MA: Harvard Business School Press.

    Google Scholar 

  10. Chesbrough, H. W. (2011). The case for open services innovation: The commodity trap. California Management Review, 53(3), 5–20.

    Article  Google Scholar 

  11. Dojchinovski, M., Kuchar, J., Vitvar, T., & Zaremba, M. (2012). Personalized graph-based selection of Web APIs. Lecture Notes in Computer Science, 7649, 34–48.

    Article  Google Scholar 

  12. Everard, A., & Henry, R. (2002). A social network analysis of interlocked directorates in electronic commerce firms. Electronic Commerce Research and Applications, 1(2), 225–234.

    Article  Google Scholar 

  13. Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215–239.

  14. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.

    Article  Google Scholar 

  15. Grewal, R., Lilien, G. L., & Mallapragada, G. (2006). Location, location, location: How network embeddedness affects project success in open source systems. Management Science, 52(7), 1043–1056.

    Article  Google Scholar 

  16. Gloor, P. A., Krauss, J., Nann, S., Fischbach, K., & Schoder, D. (2009). Web science 2.0: Identifying trends through semantic social network analysis. Proceedings of the 12th CSE, Vancouver, Canada.

  17. Haines, M. N., & Rothenberger, M. A. (2010). How a service-oriented architecture may change the software development process. Communications of the ACM, 53(8), 135–140.

    Article  Google Scholar 

  18. Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing knowledge across organization subunits. Administration Science Quarterly, 44(1), 82–111.

    Article  Google Scholar 

  19. Hargadon, A. B. (2002). Brokering knowledge: Linking, learning and innovation. Research in Organizational Behavior, 24, 41–85.

    Article  Google Scholar 

  20. Huang, K., Fan, Y., & Tan, W. (2012). An empirical study of Programmable Web: A network analysis on a service-mashup system. Proceedings of the 19th ICWS, Honolulu.

  21. Hwang, J., Altmann, J., & Kim, K. (2009). The structural evolution of the Web2.0 service network. Online Information Review, 33(6), 1040–1067.

    Article  Google Scholar 

  22. Jin, J. H., Park, S. C., & Pyon, C. U. (2011). Finding research trend of convergence technology based on Korean R&D network. Expert Systems with Applications, 38(12), 15159–15171.

    Article  Google Scholar 

  23. Jovanovic, B., & MacDonald, G. M. (1994). The life cycle of a competitive industry. Journal of Political Economy, 102(2), 322–347.

    Article  Google Scholar 

  24. Kim, K., & Altmann, J. (2013). Evolution of the software-as-a-Service innovation system through collective intelligence. International Journal of Cooperative Information Systems, 22, 1340006.

    Article  Google Scholar 

  25. Kim, K., Hwang, J. & Altmann, J. (2011). Does Web2.0 foster innovation? An analysis of the openness of the Web2.0 service network. Proceedings of the 44th HICSS, Kauai, HI.

  26. Kim, K., Altmann, J., & Hwang, J. (2010). The impact of the subgroup structure on the evolution of networks: An economic model of network evolution. Proceedings of the IEEE International Workshop on Network Science for Communication Networks (NetSciCom2010), in conjunction with IEEE Infocom 2010, San Diego, USA.

  27. Kim K. & Altmann, J. (2011). A complex network analysis of the weighted graph of the web2.0 service network. Proceedings of Collective Intelligence 2011 (COLLIN 2011).

  28. Kim, K., Lee, W.-R. & Altmann, J. (2013). Patterns of Innovation in SaaS Networks: Trend Analysis of Node Centralities. Proceedings of the European Conference of Information Systems (ECIS2013).

  29. Krackhardt, D., & Stern, R. N. (1980). Informal networks and organizational crises: An experimental simulation. Social Psychology Quarterly, 51(2), 123–140.

    Article  Google Scholar 

  30. Kuandykov, L., & Sokolov, M. (2010). Impact of social neighbourhood on diffusion of innovation S-curve. Decision Support Systems, 48(4), 531–535.

    Article  Google Scholar 

  31. Lemmens, C.E.A.V. (2004). Innovation in Technology Alliance Networks. Edward Elgar.

  32. Maglio, P. P., Srinivasan, S., Kreulen, J. T., & Spohrer, J. (2006). Service systems, service scientists, SSME, and Innovation. Communications of the ACM, 49(7), 81–85.

    Article  Google Scholar 

  33. Newman, M. E. J. (2001). Clustering and preferential attachment in growing networks. Physical Review E, 64(2), 025102.

    Article  Google Scholar 

  34. Ogrinz, M. (2009). Mashup patterns: designs and examples for the modern enterprise. Addison-Wesley.

  35. O’Reilly, T. (2007). What is Web2.0: design patterns and business models for the next generation of software. Communications and Strategies, 65, 17–37.

    Google Scholar 

  36. Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

    Article  Google Scholar 

  37. Papazoglou, M. P., & Georgakopoulos, D. (2003). Introduction: Service-oriented computing. Communications of the ACM, 46(10), 24–28.

    Article  Google Scholar 

  38. Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing, 27(2), 91–106.

    Article  Google Scholar 

  39. Rogers, E. (2003). Diffusion of innovation (5th ed.). NY: Free Press.

    Google Scholar 

  40. Rouse, L. J., Bergeron, S. J. & Harris, T. M. (2007). Participating in the geospatial web: Collaborative mapping, social networks and participatory GIS. In Scharl, A. & Tochtermann, K. (Eds.), The geospatial web: How geobrowsers, social software and the web2.0 are shaping the network society (pp. 153–158). Springer, London.

  41. Rousch, W. (2005). Killer maps. MIT Technology Review, http://www.technologyreview.com/featuredstory/ 404705/killer-maps/ (Accessed on October 1, 2005).

  42. Sasidharan, S., Santhanam, R., Brass, D. J., & Sambamurthy, V. (2011). The effects of social network structure on enterprise systems success: A longitudinal multilevel analysis. Information Systems Research, 23(3–1), 658–678.

    Google Scholar 

  43. Scott, J. (1991). Social network analysis: A Handbook. UK: Sage Publication.

    Google Scholar 

  44. Shy, O. (2001). The Economics of Network Industries. Cambridge University Press.

  45. Tsai, W. (2001). Knowledge transfer in intra-organizational networks: Effects of network position and absorptive capacity on business unit innovation and performance. Academy of Management Journal, 44(5), 996–1004.

    Article  Google Scholar 

  46. Valverde, S., & Solé, R. V. (2007). Self-organization versus hierarchy in open source social networks. Physical Review E, 76(4), 046118.

    Article  Google Scholar 

  47. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.

    Article  Google Scholar 

  48. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘Small-World’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  49. Weiss, M., & Gangadharan, G. R. (2010). Modeling the mashup ecosystem: Structure and growth. R&D Management, 40(1), 40–49.

    Article  Google Scholar 

Download references

Acknowledgement

This research was partly supported within the framework of the Basic Research Program of the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (grant number: 2013R1A1A2058665), and through the ITEA 2 Project 10,014 EASICLOUDS, which has been funded by the Korea Institute for Advancement of Technology (KIAT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jörn Altmann.

Additional information

Responsible Editor: Hans-Dieter Zimmermann

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Lee, WR. & Altmann, J. SNA-based innovation trend analysis in software service networks. Electron Markets 25, 61–72 (2015). https://doi.org/10.1007/s12525-014-0164-8

Download citation

Keywords

  • Open innovation
  • Network centralities
  • Software-as-a-service
  • Composite services
  • Service network
  • Innovation trend

JEL Classification

  • D85
  • L86
  • O33