Electronic Markets

, 21:83 | Cite as

Information and data quality in business networking: a key concept for enterprises in its early stages of development

Position Paper

Abstract

Information and data of high quality are critical for successful business performance in general and Business Networking in particular. As the trend toward sharing information between business partners and value networks is still increasing, the position paper aims at providing a comprehensive perspective on the state of research with regard to information and data quality in Business Networking. The paper shows that much has been achieved, but that fundamental aspects still remain unaddressed. Based on the results of a literature review, the paper identifies consequential areas of research and makes six propositions for future research. In doing so, the position paper aims at offering novel perspectives and at introducing new areas of research in a field of particularly high relevance in the networked business and electronic markets domain.

Keywords

Information quality Data quality Business networking Literature review Research directions 

JEL classification

L220—Firm Organization and Market Structure M100—Business Administration: General M150—IT Management 

References

  1. Allemang, D. (2010). SemanticWeb and the linked data enterprise. In D. Wood (Ed.), Linking enterprise data (pp. 3–23). Berlin: Springer. doi:10.1007/978-1-4419-7665-9_1.CrossRefGoogle Scholar
  2. Alt, R., & Fleisch, E. (2000). Business networking systems: characteristics and lessons learned. International Journal of Electronic Commerce, 5(2), 7–27.Google Scholar
  3. Alt, R., & Klein, S. (2011). Twenty years of electronic markets research—looking backwards towards the future. Electronic Markets, 21(1), 41–51. doi:10.1007/s12525-011-0057-z CrossRefGoogle Scholar
  4. Alt, R., Fleisch, E., & Werle, O. (2000). The concept of networkability—how to make companies competitive in business networks. Paper presented at the 8th European Conference on Information Systems (ECIS 2000), Vienna (Austria).Google Scholar
  5. Alt, R., Fleisch, E., & Österle, H. (2001). Introduction—chances and challenges in business networking. In H. Österle, E. Fleisch, & R. Alt (Eds.), Business networking—shaping collaboration between enterprises (2nd ed., pp. 1–14). Berlin: Springer.Google Scholar
  6. Applegate, L. M. (2001). Emerging Networked Business Models: Lessons from the Field, Working report No. 9-801-172, Harvard Business School.Google Scholar
  7. Atkinson, K., & McGaughey, R. (2006). Accounting for data: a shortcoming in accounting for intangible assets. Academy of Accounting and Financial Studies Journal, 10(2), 85–95.Google Scholar
  8. Auramo, J., Kauremaa, J., & Tanskanen, K. (2005). Benefits of IT in supply chain management: an explorative study of progressive companies. International Journal of Physical Distribution & Logistics Management, 35(2), 82–100. doi:10.1108/09600030510590282.CrossRefGoogle Scholar
  9. Barnes, S. J., & Vidgen, R. (2003). Measuring web site quality improvements: a case study of the forum on strategic management knowledge exchange. Industrial Management & Data Systems, 103(5), 297–309. doi:10.1108/02635570310477352.CrossRefGoogle Scholar
  10. Batini, C., & Scannapieco, M. (2006). Data quality. Concepts, methodologies and techniques. Berlin: Springer.Google Scholar
  11. Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for data quality assessment and improvement. ACM Computing Surveys, 41(3), 1–52. doi:10.1145/1541880.1541883.CrossRefGoogle Scholar
  12. Ben Hassine-Guetari, S. (2009). Data quality evaluation in an E-Business environment: A survey. Paper presented at the 14th International Conference on Information Quality, Potsdam (Germany).Google Scholar
  13. Berti-Équille, L. (2007). Tracing data pollution in large business applications. Paper presented at the 13th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  14. Caballero, I., Caro, A., Calero, C., & Piattini, M. (2008). IQM3: information quality management maturity model. Journal of Universal Computer Science, 14(22), 3658–3685.Google Scholar
  15. Cappiello, C., & Pernici, B. (2008). Quality-aware design of repairable processes. Paper presented at the 13th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  16. Chung, W. Y., Fisher, C., & Wang, R. (2002). What skillls matter in data quality? Paper presented at the 7th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  17. Claassen, M. J. T., van Weele, A. J., & van Raaij, E. M. (2008). Performance outcomes and success factors of vendor managed inventory (VMI). Supply Chain Management: An International Journal, 13(6), 406–414. doi:10.1108/13598540810905660.CrossRefGoogle Scholar
  18. Cullen, A. J., & Taylor, M. (2009). Critical success factors for B2B e-commerce use within the UK NHS pharmaceutical supply chain. International Journal of Operations & Production Management, 29(11), 1156–1185. doi:10.1108/01443570911000177.CrossRefGoogle Scholar
  19. Davenport, T. H. (1998). Putting the enterprise into the enterprise system. Harvard Business Review, 76(4), 121–131.Google Scholar
  20. Davenport, T. H., & Short, J. E. (1990). The new industrial engineering: information technology and business process redesign. Sloan Management Review, 31(4), 11–27.Google Scholar
  21. Dayal, U., Hsu, M., & Ladin, R. (2001). Business process coordination: State of the art, trends, and open issues. Paper presented at the 27th VLDB Conference, Rome (Italy).Google Scholar
  22. DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information Systems Research, 3(1), 60–95. doi:10.1287/isre.3.1.60.CrossRefGoogle Scholar
  23. Dholakia, N., & Firat, A. F. (2006). Global business beyond modernity. Critical Perspectives on International Business, 2(2), 147–162.CrossRefGoogle Scholar
  24. Diemers, D. (2000). A sociological framework for information quality in virtual knowledge communities. Paper presented at the 5th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  25. Dreibelbis, A., Hechler, E., Milman, I., Oberhofer, M., van Run, P., & Wolfson, D. (2008). Enterprise master data management: an SOA approach to managing core information. Upper Saddle River: IBM.Google Scholar
  26. English, L. P. (1999). Improving data warehouse and business information quality (1st ed.). New York, NY (USA): Wiley.Google Scholar
  27. Eppler, M. J. (2001). A generic framework for information quality in knowledge-intensive processes. Paper presented at the 6th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  28. Eppler, M. J., & Helfert, M. (2004). A framework for the classification of data quality costs and an analysis of their progression. Paper presented at the International Conference on Information Quality 2004, Cambridge, MA (USA).Google Scholar
  29. Fairchild, A. (2006). Decision management: role and effect of using an intelligent intermediary to aid in information sharing. Information Technology and Management, 7(4), 249–258. doi:10.1007/s10799-006-0275-9.CrossRefGoogle Scholar
  30. Fedorowicz, J., Gogan, J. L., & Culnan, M. J. (2010). Barriers to interorganizational information sharing in e-government: a stakeholder analysis. The Information Society: An International Journal, 26(5), 315–329. doi:10.1080/01972243.2010.511556.Google Scholar
  31. FInES Cluster (2011). Position paper on orientations for FP8: A European innovation partnership for catalysing the competitiveness of European enterprises. European Commsion, Future Internet Enterprise Systems (FInES) Cluster, Brussels (Belgium).Google Scholar
  32. Fleisch, E., & Österle, H. (2000). Business networking: A process-oriented framework. In H. Österle, E. Fleisch, & R. Alt (Eds.), Business networking—shaping enterprise relationships on the internet (pp. 55–91). Berlin: Springer.Google Scholar
  33. Forslund, H., & Jonsson, P. (2007). The impact of forecast information quality on supply chain performance. International Journal of Operations & Production Management, 27(1), 90–107. doi:10.1108/01443570710714556.CrossRefGoogle Scholar
  34. Global Commerce Initiative, Capgemini, SAP, HP (2008) 2018: The Future Value Chain.Google Scholar
  35. Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3), 611–642.Google Scholar
  36. Guimaraes, T., Armstrong, C, & Jones, B. (2006). Evolving a comprehensive measure for system quality. Paper presented at the 11th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  37. Helfert, M., & Radon, R. (2000). An approach for information quality measurement in data warehousing. Paper presented at the 5th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  38. Horne, N. W. (1995). Information as an asset: the board agenda. Computer Audit Update 1995 (9):5–11.Google Scholar
  39. Kagermann, H., Osterle, H., & Jordan, J. M. (2010). IT-Driven business models: Global case studies in transformation. Hoboken, NJ (USA): Wiley.Google Scholar
  40. Kathri, V., & Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148–152. doi:10.1145/1629175.1629210.CrossRefGoogle Scholar
  41. Kitchenham, B., Mendes, E., & Travassos, G. H. (2006). A systematic review of cross- vs. within-company cost estimation studies. Paper presented at the 10th International Conference on Evaluation and Assessment in Software Engineering, Staffordshire (UK).Google Scholar
  42. Kodate, A., Hario, D., Kawagishi, H., Tanaka, Y., Baba, T., & Seki, S., et al. (2005). Requirements of new emerging services in the ubiquitous networking society based on IQ analysis. Paper presented at the 10th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  43. Lee, Y. W. (2004). Crafting rules: context-reflective data quality problem solving. Journal of Management Information Systems, 20(3), 93–119.Google Scholar
  44. Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: a methodology for information quality assessment. Information Management, 40, 133–146.CrossRefGoogle Scholar
  45. Legner, C., & Lebreton, B. (2007). Preface to the focus theme section: ‘Business interoperability’ business interoperability research: present achievements and upcoming challenges. Electronic Markets, 17(3), 176–186. doi:10.1080/10196780701503054.CrossRefGoogle Scholar
  46. Legner, C., & Wende, K. (2006). Towards an Excellence Framework for Business Interoperability. Paper presented at the 19th Bled eConference, Bled (Slovenia).Google Scholar
  47. Lin, H.-F. (2007). The role of online and offline features in sustaining virtual communities: an empirical study. Internet Research, 17(2), 119–138. doi:10.1108/10662240710736997.CrossRefGoogle Scholar
  48. Lin, C.-T. (2010). Examining e-travel sites: an empirical study in Taiwan. Online Information Review, 34(2), 205–288. doi:10.1108/14684521011036954.CrossRefGoogle Scholar
  49. Liu, X., He, M., Gao, F., & Xie, P. (2008). An empirical study of online shopping customer satisfaction in China: a holistic perspective. International Journal of Retail & Distribution Management, 36(11), 919–940. doi:10.1108/09590550810911683.CrossRefGoogle Scholar
  50. Loonam, M., & O’Loghlin, D. (2008). Exploring e-service quality: a study of Irish online banking. Marketing Intelligence & Planning, 26(7), 759–780. doi:10.1108/02634500810916708.CrossRefGoogle Scholar
  51. Loshin, D. (2001). Enterprise knowledge management: The data quality approach. San Diego, CA (USA): Morgan Kaufmann.Google Scholar
  52. Maditinos, D. I., & Theodoridis, K. (2010). Satisfaction determinants in the Greek online shopping context. Information Technology & People, 23(4), 312–329. doi:10.1108/09593841011087789.CrossRefGoogle Scholar
  53. Madnick, S., Wang, R., Dravis, F., & Chen, X. (2001). Improving the quality of corporate household data: Current practices and research directions. Paper presented at the 6th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  54. Madnick, S, Wang, R., Lee, Y. W., & Zhu, H. (2009). Overview and Framework for Data and Information Quality Research. ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article 2. doi:10.1145/1515693.1516680.
  55. Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Computing Surveys, 26(1), 87–119.CrossRefGoogle Scholar
  56. MGB. (2010). Kult-Ice-Tea der Migros jetzt auch im PET. In U. P. Naef (Ed.), Press Release. Zürich (SUI): Migros-Genossenschafts-Bund.Google Scholar
  57. Melkas, H. (2004). Analyzing information quality in virtual service networks with qualitative interview data. Paper presented at the 9th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  58. Miles, R. E., & Snow, C. C. (1992). Causes of failure in network organizations. California Management Review, 34(4), 53–72.Google Scholar
  59. Moebius, M. (2002). Reasons for rejecting extranet technology in channel relationships: A study of white goods retailers in Germany. Paper presented at the 10th European Conference on Information Systems (ECIS 2002), Gdańsk (Poland), 2002-06-06.Google Scholar
  60. Moore, J. F. (1996). The death of competition: Leadership & strategy in the age of business ecosystems. New York: Harper.Google Scholar
  61. Najjar, L., & Bishu, R. (2005). Information quality in the banking industries. Paper presented at the 11th Americas Conference on Information Systems (AMCIS 2005), Omaha, NE (USA).Google Scholar
  62. Nakatani, K., Chuang. T.-T., & Zhou, D. (2006). Data synchronization technology: Standards, business values and implications. Communications of the AIS, 17(1):Art. 44.Google Scholar
  63. Nath, T., & Standing, C. (2010). Drivers of information technology use in the supply chain. Journal of Systems and Information Technology, 12(1), 70–84. doi:10.1108/13287261011032661.CrossRefGoogle Scholar
  64. Oliveira, P., Rodrigues, F., & Henriques, P. (2006). An ontology-based approach for data cleansing. Paper presented at the 11th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  65. Österle, H. (1996). Business engineering: Transition to the networked enterprise. Electronic Markets, 6(2), 14–16.Google Scholar
  66. Österle, H., & Winter, R. (2003). Business engineering. In H. Österle & R. Winter (Eds.), Business engineering (Vol. 2, pp. 3–18). Berlin (Germany): Springer.Google Scholar
  67. Österle, H., Fleisch, E., & Alt, R. (1999). Business networking. Shaping enterprise relationships on the internet. Berlin (Germany): Springer.Google Scholar
  68. Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game changers, and challengers. Hoboken, NJ (USA): Wiley.Google Scholar
  69. Otto, B. (2011). Quality management of corporate data assets. In C.-P. Praeg & D. Spath (Eds.), Quality management for IT services: Perspectives on business and process performance (pp. 193–209). Hershey, PA (USA): IGI Global.Google Scholar
  70. Otto, B., & Ofner, M. (2010). Towards a process reference model for information supply chain management. Paper presented at the 18th European Conference on Information Systems (ECIS 2010), Pretoria (South Africa).Google Scholar
  71. Otto, B., & Schmidt, A. (2010). Enterprise master data architecture: Design decisions and options. Paper presented at the Proceedings of the 15th International Conference on Information Quality, Little Rock, AR (USA).Google Scholar
  72. Otto, B., Wende, K., Schmidt, A., & Osl, P. (2007). Towards a framework for corporate data quality management. Paper presented at the 18th Australasian Conference on Information Systems, Toowoomba (Australia).Google Scholar
  73. Park, C.-H., & Kim, Y.-G. (2003). Identifying key factors affecting consumer purchase behavior in an online shopping context. International Journal of Retail & Distribution Management, 31(1), 16–29. doi:10.1108/09590550310457818.CrossRefGoogle Scholar
  74. Pokorny, L. R. (2006). Determining the cost and effectiveness of enhancing data in the U.S. Defense Logistics Agency supply chain. Paper presented at the 11th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  75. Redman, T. C. (1995). Improve data quality for competitive advantage. Sloan Management Review, 36(2), 99–107.Google Scholar
  76. Redman, T. C. (2001). Data quality. The field guide. Boston: Digital Press.Google Scholar
  77. Riemer, K., & Klein, S. (2006). Network management framework. In S. Klein & A. Poulymenakou (Eds.), Managing dynamic networks (pp. 17–66). Berlin (Germany): Springer.CrossRefGoogle Scholar
  78. Rotchanakitumnuai, S., & Speece, M. (2009). Modeling electronic service acceptance of an e-securities trading system. Industrial Management & Data Systems, 109(8), 1069–1084. doi:10.1108/02635570910991300.CrossRefGoogle Scholar
  79. Sarkis, J., & Sundarraj, R. P. (2000). Quality and process standards for electronic commerce. Paper presented at the 5th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  80. Sarner, A., Drakos, N., & Prentice, S. (2008). The Business Impact of Social Computing. Stamford, CT (USA): Gartner, Inc.Google Scholar
  81. Sarsfield. (2009). The data governance imperative: A business strategy for corporate data. Cambridgeshire (UK): IT Governance Publishing.Google Scholar
  82. Seethamraju, R. (2005). Relative importance of web quality dimensions. Paper presented at the 11th Americas Conference on Information Systems (AMCIS 2005), Omaha, NE (USA).Google Scholar
  83. Shankaranarayan, G., Wang, R. Y., & Ziad, M. (2000). IP-MAP: Representing the manufacture of an information product. Paper presented at the 2000 Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  84. Shankaranarayanan, G., & Cai, Y. (2006). Supporting data quality management in decision-making. Decision Support Systems, 42(1), 302–317. doi:10.1016/j.dss.2004.12.006.CrossRefGoogle Scholar
  85. Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37, 10–21.CrossRefGoogle Scholar
  86. Stvilia, B., Gasser, L., Twidale, M. B., Shreeves, S. L., & Cole, T. W. (2004). Metadata quality for federated collections. Paper presented at the 9th International Conference on Information Quality, Cambridge, MA (USA).Google Scholar
  87. Su, Q., Li, Z., Y-T, S., & Chen, T. (2008). Conceptualizing consumers’ perceptions of e-commerce quality. International Journal of Retail & Distribution Management, 36(5), 360–374. doi:10.1108/09590550810870094.CrossRefGoogle Scholar
  88. Swaid, S. I., & Wigand, R. T. (2007). Key dimensions of e-commerce service quality and its relationships to satisfaction and loyalty. Paper presented at the Bled eConference 2007, Bled (Slovenia),Google Scholar
  89. Tapia, R. S. (2006). What is a networked business? University of Twente, Department of Computer Science, Enschede (The Netherlands).Google Scholar
  90. Timmers, P. (1999). Business models for electronic markets. Electronic Markets, 8(2), 3–8.CrossRefGoogle Scholar
  91. Van den Hoven, J. (1999). Information resource management: stewards of data. Information Systems Management, 16(1), 88–91.CrossRefGoogle Scholar
  92. Wang, R. Y. (1998). A product perspective on total data quality management. Communications of the ACM, 41(2), 58–65.CrossRefGoogle Scholar
  93. Wang, R. Y., & Strong, D. (1996). Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–34.Google Scholar
  94. Wang, R. Y., Storey, V. C., & Firth, C. P. (1995). A framework for analysis of data quality research. IEEE Transactions on Knowledge and Data Engineering, 7(4), 623–640.CrossRefGoogle Scholar
  95. Wang, R. Y., Lee, Y. W., Pipino, L. L., & Strong, D. M. (1998). Manage your information as a product. Sloan Management Review, 39(4), 95–105.Google Scholar
  96. Webb, H. W., & Webb, L. A. (2004). SiteQual: an integrated measure of Web site quality. The Journal of Enterprise Information Management, 17(6), 430–440. doi:10.1108/17410390410566724.CrossRefGoogle Scholar
  97. Weber, K., Otto, B., & Österle, H. (2009). One Size Does Not Fit All – A Contingency Approach to Data Governance. ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article 4. doi:10.1145/1515693.1515696.
  98. Wigand, R. T., Wood, J., & Yiliyasi, Y. (2009). Information quality issues in the mortgage banking industry. Paper presented at the 14th International Conference on Information Quality, Potsdam (Germany).Google Scholar
  99. Williamson, O. E. (1979). Transaction-cost economics: the governance of contractual relations. Journal of Law and Economics, 22(2), 233–261.CrossRefGoogle Scholar
  100. Wilson, R. M. S., & Stenson, J. A. (2008). Valuation of information assets on the balance sheet: the recognition and approaches to the valuation of intangible assets. Business Information Review, 25(3), 167–182.CrossRefGoogle Scholar
  101. Winter, R. (2008). Design science research in Europe. European Journal of Information Systems, 17(5), 470–475. doi:10.1057/ejis.2008.44.CrossRefGoogle Scholar
  102. Yao, Y., & Murphy, L. (2007). Remote electronic voting systems: an exploration of voters’ perception and intention to use. European Journal of Information Systems, 16(2), 106–120. doi:10.1057/palgrave.ejis.3000672.CrossRefGoogle Scholar
  103. Zhou, T., Li, H., & Liu, Y. (2010). The effect of flow experience on mobile SNS users’ loyalty. Industrial Management & Data Systems, 110(6), 930–946. doi:10.1108/02635571011055126.CrossRefGoogle Scholar
  104. Zhu, H., & Fu, L. (2009a). Towards quality of data standards: Empirical findings from XBRL. Paper presented at the International Conference on Information Systems (ICIS 2009), Phoenix, AZ (USA).Google Scholar
  105. Zhu, H., & Wu, H. (2009b). Sloppy Tags and Metacrap? Quality of User Contributed Tags in Collaborative Social Tagging Systems. Paper presented at the 15th Americas Conference on Information Systems (AMCIS 2009), San Francisco, CA (USA).Google Scholar

Copyright information

© Institute of Information Management, University of St. Gallen 2011

Authors and Affiliations

  1. 1.Institute of Information ManagementUniversity of St. GallenSt. GallenSwitzerland
  2. 2.Information, Operations and Analysis GroupNortheastern UniversityBostonUSA
  3. 3.Department of Information Technologies and SystemsUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations