Electronic Markets

, Volume 19, Issue 4, pp 221–232 | Cite as

The evolution of costly traits through selection and the importance of oral speech in e-collaboration

  • Ned KockEmail author
Focus Theme - Invited Paper


Genes code for the expression of phenotypic traits, such as behavioral (e.g., aggressiveness) and morphological (e.g., opposing thumbs) traits. Costly traits are phenotypic traits that evolved in spite of imposing a fitness cost, often in the form of a survival handicap. In non-human animals, the classic example of costly trait is the peacock’s train, used by males to signal good health to females. It is argued here that oral speech is a costly trait evolved by our human ancestors to enable effective knowledge communication. It is shown that, because it is a costly trait, oral speech should be a particularly strong determinant of knowledge communication performance; an effect that generally applies to e-collaborative tasks performed by modern humans. The effects of oral speech support in e-collaborative tasks are discussed based on empirical studies, and shown to be consistent with the notion that oral speech is a costly trait. Specifically, it is shown that the use of e-collaboration technologies that suppress the ability to employ oral speech, when knowledge communication is attempted, leads to the two following negative outcomes: (a) a dramatic decrease in communication fluency, and (b) a significant increase in communication ambiguity. These effects are particularly acute in e-collaborative tasks of short duration.


Human evolution Costly traits Handicap principle Oral speech Electronic communication Electronic collaboration Media naturalness Compensatory adaptation 


M00 I00 C60 C63 C65 C68 


  1. Baker, G. (2002). The effects of synchronous collaborative technologies on decision making: a study of virtual teams. Information Resources Management Journal, 15(4), 79–94.Google Scholar
  2. Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs: Prentice Hall.Google Scholar
  3. Boaz, N. T., & Almquist, A. J. (2001). Biological anthropology: A synthetic approach to human evolution. Upper Saddle River: Prentice Hall.Google Scholar
  4. Burke, K., & Chidambaram, L. (1999). How much bandwidth is enough? A longitudinal examination of media characteristics and group outcomes. MIS Quarterly, 23(4), 557–580.CrossRefGoogle Scholar
  5. Burke, K., & Aytes, K. (2001). Do media really affect perceptions and procedural structuring among partially-distributed groups? Journal on Systems and Information Technology, 5(1), 10–23.Google Scholar
  6. Carlson, J. R. (1995). Channel expansion theory: A dynamic view of media and information richness perception. Doctoral dissertation. Tallahassee, FL: Florida State University.Google Scholar
  7. Cartwright, J. (2000). Evolution and human behavior: Darwinian perspectives on human nature. Cambridge: The MIT Press.Google Scholar
  8. Crowston, K., Howison, J., Masango, C., & Eseryel, U. Y. (2007). The role of face-to-face meetings in technology-supported self-organizing distributed teams. IEEE Transactions on Professional Communication, 50(3), 185–203.CrossRefGoogle Scholar
  9. Daly-Jones, O., Monk, A., & Watts, L. (1998). Some advantages of video conferencing over high-quality audio conferencing: fluency and awareness of attentional focus. International Journal of Human-Computer Studies, 49(1), 21–58.CrossRefGoogle Scholar
  10. Darwin, C. R. (1871). The descent of man, and selection in relation to sex. London: John Murray.Google Scholar
  11. DeLuca, D. C. (2003). Business process improvement using asynchronous e-collaboration: Testing the compensatory adaptation model. Doctoral Dissertation. Philadelphia: Temple University.Google Scholar
  12. Dobzhansky, T., Ayala, F. J., Stebbins, G. L., & Valentine, J. W. (1977). Evolution. San Francisco: W.H. Freeman and Company.Google Scholar
  13. Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(4), 681–735.CrossRefGoogle Scholar
  14. Dunbar, R. I. M. (1999). Culture, honesty and the freerider problem. In R. I. M. Dunbar, C. Knight & C. Power (Eds.), The evolution of culture (pp. 194–213). New Brunswick: Rutgers University Press.Google Scholar
  15. Fletcher, J. A., & Zwick, M. (2007). The evolution of altruism: Game theory in multilevel selection and inclusive fitness. Journal of Theoretical Biology, 245(1), 26–36.CrossRefGoogle Scholar
  16. Fulk, J. (1993). Social construction of communication technology. Academy of Management Journal, 36(5), 921–938.CrossRefGoogle Scholar
  17. Gardner, H. (1985). The mind’s new science. New York: Basic Books.Google Scholar
  18. Gillespie, J. H. (2004). Population genetics. Baltimore: The Johns Hopkins University Press.Google Scholar
  19. Graetz, K. A., Boyle, E. S., Kimble, C. E., Thompson, P., & Garloch, J. L. (1998). Information sharing in face-to-face, teleconferencing, and electronic chat groups. Small Group Research, 29(6), 714–743.CrossRefGoogle Scholar
  20. Graur, D., & Wen-Hsiung, L. (2000). Fundamentals of molecular evolution. Sunderland, MA: Sinauer Associates.Google Scholar
  21. Griskevicius, V., Tybur, J. M., Sundie, J. M., Cialdini, R. B., Miller, G. F., & Kenrick, D. T. (2007). Blatant benevolence and conspicuous consumption: when romantic motives elicit costly displays. Journal of Personality and Social Psychology, 93(1), 85–102.CrossRefGoogle Scholar
  22. Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218(4570), 384–387.CrossRefGoogle Scholar
  23. Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics. Sunderland: Sinauer Associates.Google Scholar
  24. Hausken, K., & Hirshleifer, J. (2008). Truthful signalling, the heritability paradox, and the Malthusian equi-marginal principle. Theoretical Population Biology, 73(1), 11–23.CrossRefGoogle Scholar
  25. Henrich, J. (2004). Cultural group selection, coevolutionary processes and large-scale cooperation. Journal of Economic Behavior & Organization, 53(1), 3–35.CrossRefGoogle Scholar
  26. Hung, D.-Z. (2004). Taiwan’s venomous snakebite: epidemiological, evolution and geographic differences. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(2), 96–101.CrossRefGoogle Scholar
  27. Kahai, S. S., & Cooper, R. B. (2003). Exploring the core concepts of media richness theory: the impact of cue multiplicity and feedback immediacy on decision quality. Journal of Management Information Systems, 20(1), 263–281.Google Scholar
  28. Kock, N. (1999). Process improvement and organizational learning: The role of collaboration technologies. Hershey: Idea Group Publishing.Google Scholar
  29. Kock, N. (2002). Compensatory adaptation: Understanding how obstacles can lead to success. Haverford: Infinity Publishing.Google Scholar
  30. Kock, N. (2004). The psychobiological model: towards a new theory of computer-mediated communication based on Darwinian evolution. Organization Science, 15(3), 327–348.CrossRefGoogle Scholar
  31. Kock, N. (2005). Compensatory adaptation to media obstacles: an experimental study of process redesign dyads. Information Resources Management Journal, 18(2), 41–67.Google Scholar
  32. Kock, N., & DeLuca, D. (2007). Improving business processes electronically: an action research study in New Zealand and the U.S. Journal of Global Information Technology Management, 10(3)), 6–27. doi: 2007.Google Scholar
  33. Kock, N., Verville, J., & Garza, V. (2007). Media naturalness and online learning: findings supporting both the significant— and no-significant-difference perspectives. Decision Sciences Journal of Innovative Education, 5(2), 333–356.CrossRefGoogle Scholar
  34. Kock, N., Chatelain-Jardón, R., & Carmona, J. (2008). An experimental study of simulated web-based threats and their impact on knowledge communication effectiveness. IEEE Transactions on Professional Communication, 51(2), 183–197.CrossRefGoogle Scholar
  35. Kokko, H., Brooks, R., McNamara, J. M., & Houston, A. I. (2002). The sexual selection continuum. Proceedings of the Royal Society of London: Biological Sciences, 269(1498), 1331–1340.CrossRefGoogle Scholar
  36. Laitman, J. T. (1984). The anatomy of human speech. Natural History, 20(7), 20–27.Google Scholar
  37. Laitman, J. T. (1993). The anatomy of human speech. In R. L. Ciochon & J. G. Fleagle (Eds.), The human evolution source book (pp. 56–60). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  38. Laitman, J. T., & Reidenberg, J. S. (1997). The human aerodigestive tract and gastroesophageal reflux: an evolutionary perspective. The American Journal of Medicine, 103(5), 2S–8S.CrossRefGoogle Scholar
  39. Lee, H. S., & Holyoak, K. J. (2008). The role of causal models in analogical inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(5), 1111–1122.CrossRefGoogle Scholar
  40. Lieberman, P. (1998). Eve spoke: Human language and human evolution. New York: W.W. Norton & Company.Google Scholar
  41. Luger, G. F., & Stubblefield, W. A. (2008). AI algorithms, data structures, and idioms in prolog, lisp, and Java for Artificial intelligence: structures and strategies for complex problem solving. Reading: Addison-Wesley.Google Scholar
  42. Manipady, S., Menezes, R. G., & Bastia, B. K. (2006). Death by attack from a wild boar. Journal of Clinical Forensic Medicine, 13(2), 89–91.CrossRefGoogle Scholar
  43. Maynard Smith, J. (1998). Evolutionary genetics. New York: Oxford University Press.Google Scholar
  44. Maynard Smith, J., & Harper, D. (2003). Animal signals. New York: Oxford University Press.Google Scholar
  45. Mayr, E. (1976). Evolution and the diversity of life. Cambridge: Harvard University Press.Google Scholar
  46. McElreath, R., & Boyd, R. (2007). Mathematical models of social evolution: A guide for the perplexed. Chicago: The University of Chicago Press.Google Scholar
  47. McQueen, R. J., Payner, K., & Kock, N. (1999). Contribution by participants in face-to-face business meetings: implications for collaborative technology. Journal of Systems and Information Technology, 3(1), 15–33.CrossRefGoogle Scholar
  48. Miller, G. F. (2000). The mating mind: How sexual choice shaped the evolution of human nature. New York: Doubleday.Google Scholar
  49. Miller, G. F. (2002). How did language evolve? In H. Swain (Ed.), Big questions in science (pp. 79–90). London: Jonathan Cape.Google Scholar
  50. Petrie, M., Halliday, T., & Sanders, C. (1991). Peahens prefer peacocks with elaborate trains. Animal Behaviour, 41(2), 323–331.CrossRefGoogle Scholar
  51. Pinker, S. (2003). Language as an adaptation to the cognitive niche. In M. Christiansen & S. Kirby (Eds.), Language evolution: States of the Art (pp. 16–37). New York: Oxford University Press.Google Scholar
  52. Price, G. R. (1970). Selection and covariance. Nature, 227(1), 520–521.CrossRefGoogle Scholar
  53. Rice, S. H. (2004). Evolutionary theory: Mathematical and conceptual foundations. Sunderland: Sinauer Associates.Google Scholar
  54. Russel, S., & Norvig, P. (2002). Artificial intelligence: A modern approach. Upper Saddle River: Prentice Hall.Google Scholar
  55. Simon, A. F. (2006). Computer-mediated communication: task performance and satisfaction. Journal of Social Psychology, 146(3), 349–379.CrossRefGoogle Scholar
  56. Short, J. A., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. London: Wiley.Google Scholar
  57. Trivers, R. (2002). Natural selection and social theory. Oxford: Oxford University Press.Google Scholar
  58. Ulijn, J. M., Lincke, A., & Karakaya, Y. (2001). Non-face-to-face international business communication: how is national culture reflected in this medium? IEEE Transactions on Professional Communication, 44(2), 126–138.CrossRefGoogle Scholar
  59. Wainfan, L., & Davis, P. K. (2004). Challenges in virtual collaboration: Videoconferencing, audioconferencing and computer-mediated communications. Santa Monica: RAND Corporation.Google Scholar
  60. Waldmann, M. R., Holyoak, K. J., & Fratianne, A. (1995). Causal models and the acquisition of category structure. Journal of Experimental Psychology: General, 124(2), 181–206.CrossRefGoogle Scholar
  61. Walker, T. (2008). Could sexual selection have made us psychological altruists? Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 39(1), 153–162.CrossRefGoogle Scholar
  62. Warkentin, M. E., Sayeed, L., & Hightower, R. (1997). Virtual teams versus face-to-face teams: an exploratory study of a web-based conferencing system. Decision Sciences, 28(4), 975–996.CrossRefGoogle Scholar
  63. Wilder, S. M., & Rypstra, A. L. (2008). Sexual size dimorphism mediates the occurrence of state-dependent sexual cannibalism in a wolf spider. Animal Behaviour, 76(2), 447–454.CrossRefGoogle Scholar
  64. Wilson, E. O. (2000). Sociobiology: The new synthesis. Cambridge: Harvard University Press.Google Scholar
  65. Wright, S. (1934). The method of path coefficients. The Annals of Mathematical Statistics, 5(3), 161–215.CrossRefGoogle Scholar
  66. Wright, S. (1960). Path coefficients and path regressions: alternative or complementary concepts? Biometrics, 16(2), 189–202.CrossRefGoogle Scholar
  67. Zahavi, A. (1975). Mate selection—A selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214.CrossRefGoogle Scholar
  68. Zahavi, A., & Zahavi, A. (1997). The handicap principle: A missing piece of Darwin’s puzzle. Oxford: Oxford University Press.Google Scholar

Copyright information

© Institute of Information Management, University of St. Gallen 2009

Authors and Affiliations

  1. 1.Division of International Business and Technology StudiesTexas A&M International UniversityLaredoUSA

Personalised recommendations