Skip to main content
Log in

Soil Erosion Vulnerability Assessment in the Eco-Sensitive Himalayan Region Using Modeling Approach

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil loss due to erosion has a huge impact on worldwide economy and environment. The Himalayan region is extremely vulnerable to erosion due to rugged terrain, erratic precipitation and excessive anthropogenic pressures. This study attempts to assess the spatial distribution of soil loss for managing soil disintegration rates in the western Himalayas using a GIS modeling approach. Factors affecting soil erosion were assessed and mapped using primary data from the field and secondary data. Map layers were developed for each identified factors and modeled using weighted overlay analysis. The rainfall-runoff erosivity, soil erodibility, topographic, cover management and support parameters varied around 361.75 MJ mm/ha/h/yr, (0.024–0.051) t ha h/ha/MJ/mm, 0–585.372, 0–1 and 0–1 respectively. The yearly soil disintegration rate varied between 0 and 6098.44 t ha/yr. The maximum area (137,165.30 ha) of the district’s total area (146,295.142 ha) was under the less vulnerable class and the minimum (259.92 ha) was under the severely vulnerable category. The findings reported 70.24% of the area was under the less vulnerable class, followed by extremely vulnerable (10.48%) > highly vulnerable (7.40%) > severely vulnerable (7.19%) > moderately vulnerable (4.69%). The maximum (810 t/ha) and minimum (15 t/ha) mean soil loss was found under severely vulnerable and less vulnerable categories. The findings will provide site specific data regarding soil loss and vulnerability for effective management of soils in the eco-sensitive region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modeling. International Soil and Water Conservation Research, 7(3), 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004.

    Article  Google Scholar 

  • Alexakis, D. D., Hadjimitsis, D. G., & Agapiou, A. (2013). Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of Yialias in Cyprus. Atmospheric Research, 131, 108–124. https://doi.org/10.1016/j.atmosres.2013.02.013.

    Article  Google Scholar 

  • Amah, J. I., Aghamelu, O. P., Omonona, O. V., & Onwe, I. M. (2020). A Study of the dynamics of soil erosion using RUSLE modelling and geospatial tool in Edda-Afikpo Mesas, south eastern Nigeria. Pakistan Journal of Geology, 4(2), 56–71. https://doi.org/10.2478/pjg-2020-0007.

    Article  Google Scholar 

  • Amsalu, A., Stroosnijder, L., & Graaf, J. (2007). Long-term dynamics in land resource use and the driving forces in the Beressa watershed, highlands of Ethiopia. Journal of Environmental Management, 83(4), 448–459. https://doi.org/10.1016/j.jenvman.2006.04.010.

    Article  Google Scholar 

  • Anonymous. (2011). Directorate of economics and statistics. District statistics and evaluation office, Ganderbal, Jammu and Kashmir.

  • Anonymous. (2014). Climate of Jammu and Kashmir. climatological publication section, Office of Additional Director General of Meteorology (Research), Pune.

  • Arekhi, S., Niazi, Y., & Kalteh, A. M. (2012). Soil erosion and sediment yield modeling using RS and GIS techniques: A case study Iran. Arabian Journal of Geosciences, 5(2), 285–296. https://doi.org/10.1007/s12517-010-0220-4.

    Article  Google Scholar 

  • Babu, R., Dhyani, B. L., & Kumar, N. (2004). Assessment of erodibility status and refined Iso- Erodent Map of India. Journal of Soil and Water Conservation, 32(2), 171–177.

    Google Scholar 

  • Bahrami, H. A., Vaghei, H. G., Vaghei, B. G., Tahmasbipour, N., & Tabari, T. F. A. (2005). New method for determining the soil erodibility factor based on fuzz systems. Journal of Agricultural Science and Technology, 17, 115–123.

    Google Scholar 

  • Barman, B. K., Rao, K. S., Sonowal, K., Zohmingliani, Prasad, N. S. R., & Sahoo, U. K. (2020). Soil erosion assessment using revised universal soil loss equation model and geo-spatial technology: A case study of upper Tuirial river basin, Mizoram India. AIMS Geosciences, 6(4), 525–544. https://doi.org/10.3934/geosci.2020030.

    Article  Google Scholar 

  • Belayneh, M., Yirgu, T., & Tsegaye, D. (2019). Potential soil erosion estimation and area prioritization for better conservation planning in Gumara watershed using RUSLE and GIS techniques. Environmental Systems Research. https://doi.org/10.1186/s40068-019-0149-x.

    Article  Google Scholar 

  • Bera, A. (2017). Estimation of Soil loss by USLE Model using GIS and Remote Sensing techniques: A case study of Muhuri River Basin, Tripura. India. Eurasian J Soil Sci, 6(3), 206–215. https://doi.org/10.18393/ejss.288350.

    Google Scholar 

  • Beskow, S., Mello, C. R., & Norton, L. D. (2009). Soil erosion prediction in the Grande river basin Brazil Using Distributed Modeling. Catena, 79(1), 49–59. https://doi.org/10.1016/j.catena.2009.05.010.

    Article  Google Scholar 

  • Bhat, S. A., Hamid, I., Dar, M. D., Rasool, D., Pandit, B. A., & Khan, S. (2017). Soil erosion modeling using RUSLE & GIS on micro watershed of J&K. Journal of Pharmacognosy and Phytochemistry, 6(5), 838–842.

    Google Scholar 

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van, O. K., Montanarella, L., & Panagos, P. (2013). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications. https://doi.org/10.1038/s41467-017-02142-7.

    Article  Google Scholar 

  • Bouhadeb, C. E., Menani, M. R., Bouguerra, H., & Derdous, O. (2018). Assessing soil loss using GIS based RUSLE methodology. Case of the Bou Namoussa watershed—Northeast of Algeria. J Water Land Dev, 36, 27–35. https://doi.org/10.2478/jwld-2018-0003.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2000). Elements of the Nature and Properties of soils. Upper Saddle River (NJ), USA: Prentice Hall.

    Google Scholar 

  • Brady, N. C., & Weil, R. C. (2012). The nature and properties of soils. Pearson education, New Delhi.

    Google Scholar 

  • Chadli, K. (2016). Estimation of soil loss using RUSLE model for Sebou Watershed (Morocco). Modeling Earth Systems and Environment, 2(2), 1–10. https://doi.org/10.1007/s40808-016-0105-y.

    Article  Google Scholar 

  • Choudhury, M. K., & Nayak, T. (2003). Estimation of Soil Erosion in Sagar Lake Catchment of Central India, Proceedings of the International Conference on Water and Environment, Bhopal, India. pp. 387–392.

  • Dar, R. A., Romshoo, S. A., Chandra, R., & Ahmad, I. (2014). Tectono-geomorphic study of the Karewa Basin of Kashmir Valley. Journal of Asian Earth Sciences, 92, 143–156. https://doi.org/10.1016/j.jseaes.2014.06.018.

    Article  Google Scholar 

  • Das, M., & Patgiri, M. (2020). Soil loss estimation using revised universal soil loss equation (RUSLE) model for Palla river basin Assam. International Journal of Advanced Science and Technology, 29(4), 4369–4377.

    Google Scholar 

  • Das, D. D. C., Bali, Y. P., & Kaul, R. N. (1981). Soil conservation in multipurpose river valley catchments. Problems, programme approaches and effectiveness. Journal of Soil and Water Conservation, 9, 5–26.

    Google Scholar 

  • Das, B., Bordolo, R. S., Thungon, L. T., Paul, A., Pandey, P. K., Mishra, M., & Tripathi, O. P. (2020). An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed Arunachal Pradesh. Journal of Earth System Science, 129(94), 1–18.

    Google Scholar 

  • Das, S., Deb, P., Bora, P. K., & Katre, P. (2021). Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India. Sustainability, 13(1), 232. https://doi.org/10.3390/su13010232.

    Article  Google Scholar 

  • Dimotta, A. (2019). Soil erosion interdiscplinary overview: Modelling approaches, ecosystem services assessment and soil quality Restoration. Applications and analysis in the Basilicata region (Italy). Ph.D. Thesis.

  • Ebabu, K., Tsunekawa, A., Haregeweyn, N., Adgo, E., Meshesha, D. T., Aklog, D., Masunaga, T., Tsubo, M., Sultan, D., Fenta, A. A., & Yibeltal, M. (2019). Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Science of the Total Environment, 648, 1462–1475. https://doi.org/10.1016/j.scitotenv.2018.08.273.

    Article  CAS  Google Scholar 

  • Erkossa, T., Wudneh, A., Desalegn, B., & Taye, G. (2015). Linking soil erosion to on-site financial cost: Lessons from watersheds in the Blue Nile basin. Solid Earth, 6, 765–774. https://doi.org/10.5194/se-6-765-2015.

    Article  Google Scholar 

  • Evans, R. (1980). Mechanics of water erosion and their spatial and temporal controls: an empirical viewpoint. Soil Erosion, Wiley, New York, USA.

    Google Scholar 

  • FAO, ITPS. (2015). Status of the World’s Soil Resources (SWSR)-Main Report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.

  • Farhan, Y., & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environment and Earth Science, 74(6), 4649–4669. https://doi.org/10.1007/s12665-015-4430-7.

    Article  Google Scholar 

  • Farhan, Y., Zreqat, D., & Nawaysa, S. (2014). Assessing the influence of physical factors on spatial soil erosion risk in northern Jordan. American Journal of Science, 10, 29–39.

    Google Scholar 

  • Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Negussie, A. (2016). Dynamics of soil erosion as influenced by watershed management practices: A case study of the Agula watershed in the semi-arid highlands of Northern Ethiopia. Environmental Management, 58(5), 889–905. https://doi.org/10.1007/s00267-016-0757-4.

    Article  Google Scholar 

  • Foster, G., Yoder, D., Weesies, G., McCool, D., McGregor, K., & Binger, K. (2003). User’s guide revised—universal soil loss equation version 2 (RUSLE 2). USDA–Agricultural Research Service Washington. DC Google Scholar.

    Google Scholar 

  • Ganai, I. H. (2014). Estimation of soil erosion for Himalayan micro-watershed using GIS technique. Ph. D. Thesis. Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India.

  • Ganasri, B. P., & Ramesh, H. (2015). Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geoscience Frontiers, 30, 1–9. https://doi.org/10.1016/j.gsf.2015.10.007.

    Article  Google Scholar 

  • Gianinetto, M., Aiello, M., Polinelli, F., Frassy, F., Rulli, M. C., Ravazzani, G., Bocchiola, D., Chiarelli, D. D., Soncini, A., & Vezzoli, R. (2019). D-RUSLE: A dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps. European Journal of Remote Sensing, 52(4), 34–53. https://doi.org/10.1080/22797254.2019.1669491.

    Article  Google Scholar 

  • Govindarajan, S. V. (1978). Studies on soils of India. Vikas Publishing House.

    Google Scholar 

  • Goy, P. N. (2015). GIS-based soil erosion modeling and sediment yield of the N’djili river basin, Democratic Republic of Congo. M. Sc. Thesis. Department of Civil and Environmental Engineering Colorado State University.

  • Gupta, S., & Kumar, S. (2017). Simulating climate change impact on soil erosion using RUSLE model—A case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science. https://doi.org/10.1007/s12040-017-0823-1.

    Article  Google Scholar 

  • Haile, G. W., & Fetene, M. (2012). Assessment of soil erosion hazard in Kilie catchment, East Shoa, Ethiopia. Land Degradation and Development, 23, 293–306. https://doi.org/10.1002/ldr.1082.

    Article  Google Scholar 

  • Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D. T., Fenta, A. A., Nyssen, J., & Adgo, E. (2017). Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of Upper Blue Nile River. Science of the Total Environment, 574, 95–108. https://doi.org/10.1016/j.scitotenv.2016.09.019.

    Article  CAS  Google Scholar 

  • Imajjane, L. B., & Belfoul, M. A. (2020). Soil loss assessment in western high Atlas of Morocco: Beni Mohand watershed study case. Applied and Environmental Soil Science. https://doi.org/10.1155/2020/6384176

    Article  Google Scholar 

  • Islam, Md. R., Imran, H. M., Islam, Md. R., & Saha, G. C. (2024). A RUSLE-based comprehensive strategy to assess soil erosion in a riverine country, Bangladesh. Environmental Earth Sciences. 83, https://doi.org/10.1007/s12665-024-11455-y.

  • Jazouli, A. E., Barakat, A., Ghafiri, A., Moutaki, S. E., Ettaqy, A., & Khellouk, R. (2017). Soil erosion modeled with USLE, GIS, and remote sensing: A case study of Ikkour watershed in Middle Atlas (Morocco). Geoscience Letter, 4, 25. https://doi.org/10.1186/s40562-017-0091-6.

    Article  Google Scholar 

  • Kenneth, G., George, R., Foster, G. A., Weesies, D. K., & McCool Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (703rd ed.). United States Department of Agriculture.

    Google Scholar 

  • Kidane, M., Bezie, A., Kesete, N., & Tolessa, T. (2019). The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02981.

    Article  Google Scholar 

  • Kumar, S., & Kushwaha, S. P. S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122(2), 389–398. https://doi.org/10.1007/s12040-013-0276-0.

    Article  Google Scholar 

  • Labriere, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M. (2015). Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems & Environment, 203, 127–139. https://doi.org/10.1016/j.agee.2015.01.027.

    Article  Google Scholar 

  • Mandal, D., & Sharda, V. N. (2011). Appraisal of soil erosion risk in the eastern Himalayan region of India for soil conservation planning. Land Degradation and Development, 24, 430–437.

    Article  Google Scholar 

  • Manjulavani, K., Prathyusha, B., & Ramesh, M. (2016). Soil erosion and sediment yield modeling using remote sensing and GIS techniques. International Journal of Applied Management, 2(10), 59–63.

    Google Scholar 

  • Maqsoom, A., Aslam, B., Hassan, U., Kazmi, Z. A., Sodangi, M., Tufail, R. F., & Farooq, D. (2020). Geospatial assessment of soil erosion intensity and sediment yield using the revised universal soil loss equation (RUSLE) model. International Journal of Geoinformatics, 9, 356–369. https://doi.org/10.3390/ijgi9060356.

    Article  Google Scholar 

  • McCool, D. K., Papendick, R. I., & Hammel, J. E. (1995). Surface residue management. In R. I. Papendick (Ed.), Crop residue management to reduce erosion and improve soil quality. Eds. R.I. Papendick, W.C. Moldenhauer. USDA: Conservation Report.

  • Meusburger, K., Steel, A., Panagos, P., Montanarella, L., & Alewell, C. (2012). Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 16, 167–177. https://doi.org/10.5194/hess-16-167-2012.

    Article  Google Scholar 

  • Ministry of Agriculture and Farmers Welfare. (2020). Conversion of Barren Land into Arable Land [Press release]. https://pib.gov.in/PressReleseDetailm.aspx?PRID=1607339.

  • Olaniya, M., Bora, P. K., Das, S., & Chanu, P. K. (2020). Soil erodibility indices under different land uses in Ri-Bhoi district of Meghalaya (India). Scientific Reports, 10, 14986. https://doi.org/10.1038/s41598-020-72070-y.

    Article  Google Scholar 

  • Ostovari, Y., Dashtaki, S. G., Bahrami, H. A., Naderi, M., & Dematte, J. A. M. (2017). Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha Watershed Northwestern Ethiopia. Geoderma, 11(2), 28–36. https://doi.org/10.1016/j.geodrs.2017.06.003.

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., & Meusburger, K. (2015). A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5(2), 117–126. https://doi.org/10.3390/geosciences5020117.

    Article  Google Scholar 

  • Pandey, A., Chowdary, V. M., & Mal, B. C. (2017). Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resource Management, 21, 729–746. https://doi.org/10.1007/s11269-006-9061-z.

    Article  Google Scholar 

  • Panditharathne, D. L. D., Abeysingha, I. N. S., Nirmanee, K. G. S., & Mallawatantri, A. (2019). Application of revised universal soil loss equation (RUSLE) model to assess soil erosion in Kalu Ganga River basin in Sri Lanka. Applied and Environmental Soil Science. https://doi.org/10.1155/2019/4037379.

    Article  Google Scholar 

  • Prasannakumar, V., Shiny, R., Geetha, N., & Vijith, H. (2011). Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: A case study of Siruvani River Watershed in Attapady Valley, Kerala, India. Environment and Earth Science, 46, 965–972. https://doi.org/10.1007/s12665-011-0913-3.

    Article  Google Scholar 

  • Rawat, K. S., Mishra, A. K., & Bhattacharyya, R. (2016). Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM þ, RUSLE, and GIS—a case study. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-015-2157-0.

    Article  Google Scholar 

  • Raza, M., Ahmad, A., & Mohammad, A. (1978). The valley of Kashmir: A geographical Interpretation. Vikas Publishing House.

    Google Scholar 

  • Saroha, J. (2017). Soil erosion: Causes extent and management in India. International journal of creative research thoughts, 5(4), 1321–1330.

    Google Scholar 

  • Sharma, J. C., & Chaudhary, S. K. (2007). Land use, nutrient indexing and soil fertility mapping of Mandhala watershed in Shiwalik foot hills of Himachal Pradesh—A GIS approach. Agropedology, 17(1), 41–49.

    Google Scholar 

  • Sharma, J., & XuSharma, G. (2007). Traditional agroforestry in the eastern Himalayan region: Land management system supporting ecosystem services. Tropical Ecology, 48(2), 189–200.

    Google Scholar 

  • Shoumik, B, A. A; Khan, Md. Z. and Islam, Md. S. (2023). Soil erosion estimation by RUSLE model using GIS and remote sensing techniques: A case study of the tertiary hilly regions in Bangladesh from 2017 to 2021. Environmental Monitoring and Assessment. 195. https://doi.org/10.1007/s10661-023-11699-4.

  • Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed India. International Soil and Water Conservation Research, 5(3), 202–211. https://doi.org/10.1016/j.iswcr.2017.05.006.

    Article  Google Scholar 

  • Singh, G., Babu, R., Narain, P., Bhusan, L. S., & Abrol, I. P. (1992). Soil erosion rates in India. Journal of Soil and Water Conservation, 47(1), 97–99.

    Google Scholar 

  • Sotiropoulou, A. M., Alexandridis, T., Bilas, G., Karapetsas, N., Tzellou, A., Silleos, N., & Misopolinos, N. (2011). A user friendly GIS model for the estimation of erosion risk in agricultural land using the USLE. In: M. Salampasis, A. Matapoulos (Eds.): Proceedings of the International Conference on Information and Communication Technologies for Sustainable Agri-production and Environment (HAICTA 2011), Skiathos.

  • Srinivasan, R., Singh, S. K., Nayak, D., Hegde, R., & Ramesh, M. (2019). Estimation of soil loss by USLE Model using remote sensing and GIS techniques—A case study of coastal Odisha, India. Eurasian Journal of Soil Science, 8(4), 321–328. https://doi.org/10.18393/ejss.598120.

    Article  Google Scholar 

  • Tamiru, H., & Wagari, M. (2021). RUSLE model based Annual Soil Loss Quantification for soil erosion protection in Fincha Catchment, Abay River Basin, Ethiopia. Preprints. https://doi.org/10.20944/preprints202102.0526.v1.

    Article  Google Scholar 

  • Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district Nepal. Environmental System Research. https://doi.org/10.1186/s40068-020-00177-2.

    Article  Google Scholar 

  • Uddin, K., Matin, M. A., & Maharjan, S. (2018). Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. Sustainability, 10(12), 4715–4726. https://doi.org/10.3390/su10124715

    Article  Google Scholar 

  • Wang, J., Qian, H., Zhou, P., & Gong, Q. (2019). Test of the RUSLE and key influencing factors using GIS and probability methods: A case study in Nanling national nature reserve South China. Advanced Civil Engineering. 7129639, https://doi.org/10.1155/2019/7129639.

  • Wani, A. A., Joshi, P. K., Singh, O., Kumar, R., & Rawat, V. R. S. (2017). Forest biomass carbon dynamics (1980–2009) in Western Himalaya in the context of REDD+ policy. Environment and Earth Science, 76, 573. https://doi.org/10.1007/s12665-017-3903-3.

    Article  Google Scholar 

  • Wani, A. A., Bhat, A. F., Gatoo, A. A., Zahoor, S., Mehraj, B., Najam, N., Wani, Q. S., Islam, M. A., Murtaza, S., Dervash, M., & Joshi, P. K. (2021). Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas. Mitigation and Adaptation Strategies for Global Change, 26(1), 1–22. https://doi.org/10.1007/s11027-021-09937-6.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1965). Prediction rainfall erosion losses from cropland east of the rocky mountains: A guide for selection of practices for soil and water conservation. Agricultural Handbook, 282, 48.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: guide to conservation planning (537th ed.). USDA Agriculture Handbook 537. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.

    Google Scholar 

  • Yesuph, A. Y., & Dagnew, A. B. (2019). Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environmental Systems Research, 8(1), 1–21. https://doi.org/10.1186/s40068-019-0145-1.

    Article  Google Scholar 

  • Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., Ritsema, C. J., & Geissen, V. (2013). Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 52, 177–188. https://doi.org/10.1016/j.cageo.2012.09.027.

    Article  Google Scholar 

  • Zonunsanga, R. (2016). Estimation of Soil loss in Teirei watershed of Mizoram by using the USLE Model. J Sci Tech, 4, 43–47.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received from the field staff of the Division of Natural Resource Management, Faculty of Forestry SKUAST-K in carrying out the field activities regarding preliminary survey, collection of soil samples and ground truth points.

Funding

We thank the Department of Science and Technology, Government of India, for providing financial support to the Author 1 (SZ) in carrying out this study under INSPIRE Fellowship no. DST/INSPIRE Fellowship/2018/IF180413. We also thank EACEA to enable us to use the equipment purchased by the Author 2 (AAW) under Erasmus + funded URGENT project (No: 619050-EPP-1-2020-1-DE-EPPKA2-CBHE-JP).

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed to the work under different capacities. SZ and AAW conceptualized the design and drafted the manuscript. SZ, AAG, MAI and SM collected and complied the field data. SZ, AAW, THM and PKJ carried out the data analysis. All authors contributed in reviewing the manuscript.

Corresponding author

Correspondence to Akhlaq Amin Wani.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoor, S., Wani, A.A., Gatoo, A.A. et al. Soil Erosion Vulnerability Assessment in the Eco-Sensitive Himalayan Region Using Modeling Approach. J Indian Soc Remote Sens 52, 1347–1360 (2024). https://doi.org/10.1007/s12524-024-01874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-024-01874-6

Keywords

Navigation