Abstract
Climate change does not occur in the same way worldwide; its effects display regional differences. Some regions with unique characteristics may experience dramatic changes, leading to significant indications for the global climate. The Siberian high, a system of high atmospheric pressure, is formed on the Central Siberian Plateau, affecting a significant part of the northern hemisphere from November to February. Climate changes in this region have significant influences on the global climate cycle. Hence, determining the temperature trends of this region will yield key indicators for climate change studies. Remote sensing provides useful databases for climate change studies, surface temperatures, temporal and spatial resolutions, and numerous advantages. In the present study, we aimed to determine the temporal and spatial surface temperature trends of the Central Siberian Plateau. As our data source, we used MODIS (Aqua and Terra) satellite images for 8 days between 2002- and 2021. The measurements from the region were arranged as monthly and annual values, presented as mean, minimum, maximum, and standard deviation. Then, using these data, we obtained the mean values for the region and performed Mann–Kendall trend analyses. Accordingly, there was an overall increase of more than 2 °C in the study area. We performed a pixel-based Mann–Kendall trend test to reveal the mean annual temperatures and detect local changes. Our findings showed significant rises in temperature in the northern part of the study area.
Similar content being viewed by others
Data Availability
Sample data and python program have shared as supplementary material.
References
Ahmed, S. (2018). Assessment of urban heat islands and impact of climate change on socioeconomic over suez governorate using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 15–25. https://doi.org/10.1016/j.ejrs.2017.08.001
Akinyemi, F. O., Ikanyeng, M., & Muro, J. (2019). Land cover change effects on land surface temperature trends in an African. City and Environment Interactions, 4, 1–10. https://doi.org/10.1016/j.cacint.2020.100029
Ali, R. O., & Abubaker, S. R. (2019). Trend analysis using Mann-Kendall, Sen’s slope estimator test and innovative trend analysis method in Yangtze river basin, China. International Journal of Engineering & Technology, 8(2), 110–119. https://doi.org/10.14419/ijet.v7i4.29591
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 1–12. https://doi.org/10.1038/sdata.2018.214
Britannica, T. Editors of Encyclopaedia. (2017). Siberian anticyclone. Encyclopedia Britannica. https://www.britannica.com/science/Siberian-anticycloneadresindenalindi.
Brown, M., de Beurs, K., & Marshall, M. (2012). Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sensing of Environment, 126, 174–183. https://doi.org/10.1016/j.rse.2012.08.009
Campbell, J., & Wynne, R. (2011). Introduction to Remote Sensing (5th ed.). The Guilford Press. https://www.guilford.com/excerpts/campbell2_old_ch1.pdf?t=1
Copernicus. (2020). Climate Change Service: ESOTC 2020: ARCTIC. Heat in Siberia: https://climate.copernicus.eu/esotc/2020/heat-siberiaadresindenalindi
Cosun, F., & Karabulut, M. (2009). Kahramanmaraş’ta ortalama, minimum ve maksimum sıcaklıkların trend analizi. Türk Coğrafya Dergisi, 53, 41–50. https://dergipark.org.tr/tr/pub/tcd/issue/21228/227810
Cutter, S. L. (2019). Community resilience, natural hazards, and climate change: Is the present. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 74(3), 200–208. https://doi.org/10.1080/00291951.2019.1692066
D’Arrigo, R., Jacoby, G., Wilson, R., & Panagiotopoulos, F. (2005). A reconstructed Siberian High index since AD 1599 from Eurasian and North American tree rings. Geophysical Research Letters, 32(5), L05705. https://doi.org/10.1029/2004GL022271
Doğan, İ., Kaya, Ö., & Özcan, M. (2021). Analysis of Surface temperature changes and uncertainty of Taymyr Peninsula Accordıng to MODIS data between 2002–2021. Internatıonal Congress on Geographıcal Educatıon (s. 821–838). Sivas Cumhuriyet University. https://doi.org/10.15298/arctoa.25.11
Duan, S.-B., Li, Z.-L., Li, H., Göttsche, F.-M., Wu, H. Z., Leng, P. Z., & Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16–29. https://doi.org/10.1016/j.rse.2019.02.020
Gong, D. Y., & Ho, C. H. (2002). The Siberian High and climate change over middle to high latitude Asia. Theoretical and Applied Climatology, 72(1), 1–9. https://doi.org/10.1007/s007040200008
Hasanean, H. M., Almazroui, M., Jones, P. D., & Alamoudi, A. A. (2013). Siberian high variability and its teleconnections with tropical circulations and surface air temperature over Saudi Arabia. Climate Dynamics, 41(7), 2003–2018. https://doi.org/10.1007/s00382-012-1657-9
IPCC. (2021). Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
Kendall, M. G. (1975). Rank Correlation Methods. Oxford University Press. https://www.amazon.com/Rank-Correlation-Methods-Maurice-Kendall/dp/0852641990
Kte'pi, B. (2008). Climate Thresholds. S. G. Philander içinde, Encyclopedia of Global warming and Climate Change (s. 225). SAGE Publications. https://us.sagepub.com/enus/nam/encyclopedia-of-global-warming-and-climate-change-second-edition/book235700
Lujala, P., & Lein, H. (2020). The role of personal experiences in Norwegian perceptions of climate change. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 74(3), 138–151. https://doi.org/10.1080/00291951.2020.1731850
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica(13), 245–259. https://doi.org/10.2307/1907187
Matthes, H., Rinke, A., Miller, P. A., Kuhry, P., Dethloff, K., & Wolf, A. (2012). Sensitivity of high-resolution Arctic regional climate model projections to different implementations of land surface processes. Climatic Change(111), 197–214. https://doi.org/10.1007/s10584-011-0138-1
Munang, R., Thiaw, I., Alverson, K., Mumba, M., Liu, J., & Rivington, M. (2013). Climate change and ecosystem-based adaptation: A new pragmatic approach to buffering climate change impacts. Current Opinion in Environmental Sustainability, 5(1), 67–71. https://doi.org/10.1016/j.cosust.2012.12.001
Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld, F., Waske, B., & Diekkrüger, B. (2018). Land surface temperature trends as indicator of land use changes in wetlands. International Journal of Applied Earth Observation and Geoinformation, 70, 62–71. https://doi.org/10.1016/j.jag.2018.02.002
Oku, Y., Ishikawa, H., Haginoya, S., & Ma, Y. (2006). Recent trends in land surface temperature on the Tibetan Plateau. Journal of Climate, 19(12), 2995–3003. https://doi.org/10.1175/JCLI3811.1
Özey, R. (2012). Asya Coğrafyası. Aktif Yayınları. https://www.idealkultur.com/asya-cografyasi
Philander, S. G. (2008). Chronology. S. G. Philander içinde, Encyclopedia of Global warming and Climate Change (s. xlvii-liii). SAGE Publications. https://us.sagepub.com/enus/nam/encyclopedia-of-global-warming-and-climate-change-second-edition/book235700
Polyakov, I., Timokhov, L., Alexeev, V., Bacon, S., & Dmitrenko, I. (2010). Arctic ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40, 2743–2756. https://doi.org/10.1175/2010JPO4339.1
Saio, K., & Enekhab, D. (2001). The role of the Siberian high in Northern Hemisphere climate variability. Geophysical Research Letters, 28(2), 299–302. https://doi.org/10.1029/2000GL011927
Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–179. https://doi.org/10.1038/nature14338
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://www.jstor.org/stable/2285891
Stevens‐Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889
Tchebakova, N. M., Parfenova, E. I., Lysanova, G. I., & Soja, A. J. (2011). Agroclimatic potential across central Siberia in an altered twenty-first century. Environmental Research Letters,. https://doi.org/10.1088/1748-9326/6/4/045207
Urban, M., Forkel, M., Eberle, J., Hüttich, C., Schmullius, C., & Herold, M. (2014). Pan-Arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981–2012). Remote Sensing, 6, 2296–2316. https://doi.org/10.3390/rs6032296
Urban, M., Forkel, M., Schmullius, C., Hese, S., Hüttich, C., & Herold, M. (2013). Identification of land surface temperature and albedo trends in AVHRR Pathfinder data from 1982 to 2005 for northern Siberia. International Journal of Remote Sensing(34), 4491–4507. https://doi.org/10.1080/01431161.2013.779760
Van De Kerchove, R., Lhermitte, S., & Veraverbeke, S. G. (2013). Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains. International Journal of Applied Earth Observation and Geoinformation, 20, 4–19. https://doi.org/10.1016/j.jag.2011.09.007
Vermote, E. F., Roger, J. C., & Ray, J. P. (2015). MODIS Surface Reflectance User’s Guide: Collection 6. MODIS Land Surface Reflectance Science Computing Facility. https://lpdaac.usgs.gov/documents/306/MOD09_User_Guide_V6.pdf
Wang, F., Shao, W., Kan, G., He, X., Zhang, D., Ren, M., & Wang, G. (2020). Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science, 8(14), 1–12. https://doi.org/10.3389/feart.2020.00014
Yang, M., Wei, Z., Qiqi, Z., & Xiong, D. (2021). Spatiotemporal patterns of land surface temperature change in the Tibetan Plateau based on. Ieee Journal of Selected Topıcs in Applıed Earth Observatıons and Remote Sensıng, 14, 6501–6514 https://doi.org/10.1109/JSTARS.2021.3089851
Yavaşlı, D. D. (2017). Spatio-temporal tends of urban heat Island and surface. American Journal of Remote Sensing, 5(3), 24–29. https://doi.org/10.11648/j.ajrs.20170503.11
Zhang, W., Miller, P. A., Smith, B., Wania, R., Koenigk, T., & Döscher, R. (2013). Tundra shrubification and tree-line advance amplify arctic climate warming: Results from an individual-based dynamic vegetation model. Environmental Research Letters, 8, 1–11. https://doi.org/10.1088/1748-9326/8/3/034023
Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., & Li, A. (2019). An analysis of land surface temperature trends in the central Himalayan region based on MODIS products. Remote Sensing, 11(8), 900. https://doi.org/10.3390/rs11080900
Zhou, X., Matthes, H., Rinke, A., Klehmet, K., Heim, B., Dorn, W., & Klaus, D. (2014). Evaluation of Arctic Land snow cover characteristics, surface albedo, and temperature during the transition seasons from regional climate model simulations and satellite data. Advances in Meteorology, 1–16. https://doi.org/10.1155/2014/604157
Zhou, C., & Wang, K. (2016). Land surface temperature over global deserts:Means, variability, and trends. Journal of Geopyhsical Research: Atmosphere, 121, 14344–14357. https://doi.org/10.1002/2016JD025410
Acknowledgement
We do not feel the need to express gratitude to any specific individual or organization as this article was written without receiving support or funding from any institution, organization, or individual.
Funding
This study was not supported by any institution or organization.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical Approval
Not applicable.
Consent to Participate
Not applicable.
Consent to Publish
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Özcan, M., Kaya, Ö. & Doğan, İ. Surface Temperature Trends on the Central Siberian Plateau. J Indian Soc Remote Sens 51, 1343–1355 (2023). https://doi.org/10.1007/s12524-023-01706-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12524-023-01706-z