Skip to main content

Advertisement

Log in

Intimidating Evidences of Climate Change from the Higher Himalaya: A Case Study from Lahaul, Himachal Pradesh, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Climate change manifestations are no longer shades of grey, but the unprecedented evidences and repercussions are now in black and white. The mounting evidences from the high-mountain areas via accelerated glacier melting, permafrost thaw and expansion of glacier lakes are becoming a major concern for high-mountain communities, environmentalists and policy makers. The accelerated expansion of glacial lakes in the higher Himalaya is not just the expression of glacial melting to climate warming, but poses a serious threat in terms of glacial lake outburst floods (GLOFs). The present investigation focuses on a moraine-dammed pro-glacial lake (MDPGL) in the Kadu Nala valley (Lahaul, western Himalaya, India) that has evolved in less than a decade and has been expanding at an alarming rate since 2014. The data show that the actual development of the lake started in 2010 and has expanded to ~ 0.18 km2 in 2021. The limitation in direct correlations of warming impacting the cryosphere in the higher Himalayan region and hence in the present study is the scarcity of metrological data (especially temperature and precipitation). Therefore, the climate research data (CRU), along with the inferences from tree ring width data, have been used to understand the climatic impacts in this area. Considering that forecasting is a very important aspect of environmental studies, we have used four different forecasting methods to estimate the glacier and glacial lake change scenarios in the present study. The ongoing trends and the model projections of future show accelerated glacier loss and associated glacial lake expansion in Kadu Nala valley and highlight the need for a close monitoring of such lakes, because it has been demonstrated that even the GLOFs from small pro-glacial lakes have the ability to transform into a giant trans-border flood and debris flow. An analogous trend, magnitude and accelerated glacier melting and expansion of glacial lakes in the Himalaya may be attributed to a regionally coherent climate forcing, consistent with atmospheric as well as elevation-dependent warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali, S. N., Quamar, M. F., Phartiyal, B., & Sharma, A. (2018). Need for permafrost researches in Indian Himalaya. Journal of Climate Change, 4(1), 33–36. https://doi.org/10.3233/JCC-180004

    Article  Google Scholar 

  • Alonzo, I. & Cruz, C. (2020). varstan: An R Package for Bayesian time series models with Stan. arxiv preprint. https://doi.org/10.48550/arXiv.2005.10361

  • Bali, R., Khan, I., Sangode, S. J., Mishra, A. K., Ali, S. N., Singh, S. K., Tripathi, J. K., Singh, D. S., & Srivastava, P. (2017). Mid-to late Holocene climate response from the Triloknath palaeolake, Lahaul Himalaya based on multiproxy data. Geomorphology, 284, 206–219. https://doi.org/10.1016/j.geomorph.2016.10.028

    Article  Google Scholar 

  • Beniston, M. (2003). Climatic change in mountain regions: a review of possible impacts. Climate Variability and Change in High Elevation Regions: Past, Present & Future. https://doi.org/10.1007/978-94-015-1252-7_2

    Article  Google Scholar 

  • Beniston, M. (2005). The risks associated with climatic change in mountain regions. In Global change and mountain regions (pp. 511–519). Springer, Dordrecht.

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  • Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 1–32. https://doi.org/10.18637/jss.v076.i01

    Article  Google Scholar 

  • Carrivick, J. L., & Tweed, F. S. (2013). Proglacial lakes: Character, behaviour and geological importance. Quaternary Science Reviews, 78, 34–52. https://doi.org/10.1016/j.quascirev.2013.07.028

    Article  Google Scholar 

  • Carrivick, J. L., How, P., Lea, J. M., Sutherland, J. L., Grimes, M., Tweed, F. S., Cornford, S., Quincey, D. J., & Mallalieu, J. (2022). Ice-marginal proglacial lakes across Greenland: Present status and a possible future. Geophysical Research Letters. https://doi.org/10.1029/2022GL099276

    Article  Google Scholar 

  • Cogley, J.G., R. Hock, L.A. Rasmussen, A.A. Arendt, A. Bauder, R.J. Braithwaite, P. Jansson, G. Kaser, M. Möller, L. Nicholson & M. Zemp (2011). Glossary of glacier mass balance and related terms. IHP-VII technical Documents in hydrology No. 86, IACS contribution No. 2, UNESCO-IHP, Paris.

  • Cook & Holmes (1996). Holmes Guide for computer program ARSTAN The international tree-ring data bank program library version, 2 (1996), pp. 75–87.

  • Cook, E. R., & Peters, K. (1981). The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull, 41(1981), 45–53.

    Google Scholar 

  • Cramer, W., Yohe, G. W., Auffhammer, M., Huggel, C., Molau, U., da Silva Dias, M. A. F., Solow, A., Stone, D. A., & Tibig, L. (2014). Detection and attribution of observed impacts. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 979–1037.

  • Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3), 775–800. https://doi.org/10.1007/s10584-011-0201-y

    Article  Google Scholar 

  • Emmer, A., Loarte, E. C., Klimeš, J., & Vilímek, V. (2015). Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru). Geomorphology, 228, 345–355. https://doi.org/10.1016/j.geomorph.2014.09.018

    Article  Google Scholar 

  • Eppes, M. C., & Keanini, R. (2017). Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Reviews of Geophysics, 55(2), 470–508. https://doi.org/10.1002/2017RG000557

    Article  Google Scholar 

  • Eugster, P., Scherler, D., Thiede, R. C., Codilean, A. T., & Strecker, M. R. (2016). Rapid last glacial maximum deglaciation in the Indian Himalaya coeval with mid latitude glaciers: New insights from 10Be-dating of ice-polished bedrock surfaces in the Chandra Valley. NW Himalaya. Geophysical Research Letters, 43(4), 1589–1597. https://doi.org/10.1002/2015GL066077

    Article  Google Scholar 

  • Frias-Bustamante, M., Martinez-Rodriguez, A., Conde-Sanchez, A., & Martinez, F. (2022). Time Series Forecasting Using GRNN_. R package version 1.0.2.

  • Fritts, H. (2012). Tree rings and climate. Elsevier, 582 p.

  • Gallach, X., Ravanel, L., Egli, M., Brandova, D., Schaepman, M., Christl, M., Gruber, S., Deline, P., Carcaillet, J., & Pallandre, F. (2018). Timing of rockfalls in the Mont Blanc massif (Western Alps): Evidence from surface exposure dating with cosmogenic 10Be. Landslides, 15(10), 1991–2000. https://doi.org/10.1007/s10346-018-0999-8

    Article  Google Scholar 

  • Gardelle, J., Berthier, E., Arnaud, Y., & Kääb, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere, 7(4), 1263–1286. https://doi.org/10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Gertler, P.J., Martinez, S., Premand, P., Rawlings, L.B. & Vermeersch, C.M. (2016). Impact evaluation in practice. World Bank Publications.

  • Ghatak, D., Sinsky, E., & Miller, J. (2014). Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia. Environmental Research Letters, 9(11), 114008. https://doi.org/10.1088/1748-9326/9/11/114008

    Article  Google Scholar 

  • Granshaw, F. D., & Fountain, A. G. (2006). Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. Journal of Glaciology, 52(177), 251–256. https://doi.org/10.3189/172756506781828782

    Article  Google Scholar 

  • Grissino-Mayer, H. D. (2001). Evaluating cross dating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res., 57, 205–221.

    Google Scholar 

  • Guo, D., Sun, J., Yang, K., Pepin, N., Xu, Y., Xu, Z., & Wang, H. (2020). Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snow-albedo feedback. International Journal of Climatology, 40(3), 1644–1655. https://doi.org/10.1002/joc.6292

    Article  Google Scholar 

  • Heimsath, A. M., & McGlynn, R. (2008). Quantifying periglacial erosion in the Nepal high Himalaya. Geomorphology, 97(1–2), 5–23. https://doi.org/10.1002/joc.6292

    Article  Google Scholar 

  • Holmes, R. L. (1983). Computer assisted quality control. Tree-ring Bull, 43, 69–78.

    Google Scholar 

  • Hyndman, R., Koehler, A.B., Ord, J.K., & Snyder, R.D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media.

  • Hyndman, R.J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S., & Wang, E. (2020). Package ‘forecast’. Online: https://cran.r-project. org/web/packages/forecast/forecast.pdf.

  • IPCC (International Panel for Climate Change). (2014). Climate change synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. 151.

  • Kraaijenbrink, P. D., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549(7671), 257–260. https://doi.org/10.1038/nature23878

    Article  Google Scholar 

  • Kumar, R., Bahuguna, I. M., Ali, S. N., & Singh, R. (2020). Lake Inventory and Evolution of Glacial Lakes in the Nubra-Shyok Basin of Karakoram Range. Earth System Environment, 4, 57–70. https://doi.org/10.1007/s41748-019-00129-6

    Article  Google Scholar 

  • Leinss, S., Bernardini, E., Jacquemart, M., & Dokukin, M. (2021). Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019). Natural Hazards and Earth System Sciences, 21(5), 1409–1429. https://doi.org/10.5194/nhess-21-1409-2021

    Article  Google Scholar 

  • Martínez, F., Charte, F., Rivera, A. J., & Frías, M. P. (2019). Automatic time series forecasting with GRNN: A comparison with other models. In I. Rojas, G. Joya, & A. Catala (Eds.), Advances in Computational Intelligence (pp. 198–209). Springer International Publishing.

    Chapter  Google Scholar 

  • Martínez, F., Charte, F., Frías, M. P., & Martínez-Rodríguez, A. M. (2022). Strategies for time series forecasting with generalized regression neural networks. Neuro Computing, 491, 509–521. https://doi.org/10.1016/j.neucom.2021.12.028

    Article  Google Scholar 

  • Maurer, J. M., Schaefer, J. M., Rupper, S., & Corley, A. J. S. A. (2019). Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances. https://doi.org/10.1126/sciadv.aav7266

    Article  Google Scholar 

  • McColl, S. T., & Davies, T. R. (2013). Large ice-contact slope movements: Glacial buttressing, deformation and erosion. Earth Surface Processes and Landforms, 38(10), 1102–1115. https://doi.org/10.1002/esp.3346

    Article  Google Scholar 

  • Ming, J., Wang, Y., Du, Z., Zhang, T., Guo, W., Xiao, C., Xu, X., Ding, M., Zhang, D., & Yang, W. (2015). Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century. PLoS One, 10(6), e0126235. https://doi.org/10.1371/journal.pone.0126235

    Article  Google Scholar 

  • Murton, J. B., Peterson, R., & Ozouf, J. C. (2006). Bedrock fracture by ice segregation in cold regions. Science, 314(5802), 1127–1129.

    Article  Google Scholar 

  • Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., & Song, C. (2017). A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 189, 1–13. https://doi.org/10.1016/j.rse.2016.11.008

    Article  Google Scholar 

  • Owen, L. A., Derbyshire, E., Richardson, S., Benn, D. I., Evans, D. J., & Mitchell, W. A. (1996). The Quaternary glacial history of the Lahul Himalaya, northern India. Journal of Quaternary Science: Published for the Quaternary Research Association, 11(1), 25–42.

    Article  Google Scholar 

  • Owen, L. A., Gualtieri, L. Y. N., Finkel, R. C., Caffee, M. W., Benn, D. I., & Sharma, M. C. (2001). Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, Northern India: Defining the timing of Late Quaternary glaciation. Journal of Quaternary Science: Published for the Quaternary Research Association, 16(6), 555–563.

    Article  Google Scholar 

  • Palomo, I. (2017). Climate change impacts on ecosystem services in high mountain areas: A literature review. Mountain Research and Development, 37(2), 179–187. https://doi.org/10.1659/MRD-JOURNAL-D-16-00110.1

    Article  Google Scholar 

  • Pandey, P., Ali, S. N., & Champati Ray, P. K. (2021a). Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994–2017). Journal of Earth Science, 32(6), 1563–1574. https://doi.org/10.1007/s12583-020-1056-9

    Article  Google Scholar 

  • Pandey, P., Chauhan, P., Bhatt, C. M., Thakur, P. K., Kannaujia, S., Dhote, P. R., Roy, A., Kumar, S., Chopra, S., Bhardwaj, A., & Aggrawal, S. P. (2021b). Cause and process mechanism of rockslide triggered flood event in Rishiganga and Dhauliganga River Valleys, Chamoli, Uttarakhand, India using satellite remote sensing and in situ observations. Journal of the Indian Society of Remote Sensing, 49(5), 1011–1024. https://doi.org/10.1007/s12524-021-01360-3

    Article  Google Scholar 

  • Pandey, P., Banerjee, D., Ali, S. N., Khan, M. A. R., Chauhan, P., & Singh, S. (2022a). Simulation and risk assessment of a possible glacial lake outburst flood (GLOF) in the Bhilangna Valley, central Himalaya. India. Journal of Earth System Science, 131(3), 1–17. https://doi.org/10.1007/s12040-022-01940-y

    Article  Google Scholar 

  • Pandey, V. K., Kumar, R., Singh, R., Kumar, R., Rai, S. C., Singh, R. P., Tripathi, A. K., Soni, V. K., Ali, S. N., Tamang, D., & Latief, S. U. (2022b). Catastrophic ice-debris flow in the Rishiganga River, Chamoli, Uttarakhand (India). Geomatics, Natural Hazards and Risk, 13(1), 289–309. https://doi.org/10.1080/19475705.2021.2023661

    Article  Google Scholar 

  • Pellicciotti, F., Stephan, C., Miles, E., Herreid, S., Immerzeel, W. W., & Bolch, T. (2015). Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. Journal of Glaciology, 61(226), 373–386. https://doi.org/10.3189/2015JoG13J237

    Article  Google Scholar 

  • Pepin, N. C., & Lundquist, J. D. (2008). Temperature trends at high elevations: patterns across the globe. Geophysical Research Letters. https://doi.org/10.1029/2008GL034026

    Article  Google Scholar 

  • Pepin, et al. (2015). Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  • Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. Springer Science & Business Media.

  • Planet Team. (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com.

  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Rangwala, I., Miller, J. R., Russell, G. L., & Xu, M. (2010). Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dynamics, 34(6), 859–872. https://doi.org/10.1007/s00382-009-0564-1

    Article  Google Scholar 

  • Richardson, S. D., & Reynolds, J. M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65, 31–47.

    Article  Google Scholar 

  • Rohman, A., & Wiyono, R.U. A. (2022). Trend Analysis and Forecasting of Long-Term Temperature Data to Anticipate Local Warming: A Case Study of Jawa Timur, Indonesia. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. https://doi.org/10.1088/1755-1315/1084/1/012040

  • Sabin, T. P., Krishnan, R., Vellore, R., Priya, P., Borgaonkar, H. P., Singh, B. B. & Sagar, A. (2020). Climate change over the Himalayas. In Assessment of climate change over the Indian region (pp. 207–222). Singapore: Springer. https://doi.org/10.1007/978-981-15-4327-2_11.

  • Sain, K., Kumar, A., Mehta, M., Verma, A., Tiwari, S. K., Garg, P. K., Kumar, V., Rai, S. K., Srivastava, P., & Sen, K. (2021). A perspective on Rishiganga-Dhauliganga flash flood in the Nanda Devi biosphere reserve, Garhwal Himalaya, India. Journal of the Geological Society of India, 97(4), 335–338. https://doi.org/10.1007/s12594-021-1691-5

    Article  Google Scholar 

  • Sattar, A., Goswami, A., Kulkarni, A. V., Emmer, A., Haritashya, U. K., Allen, S., Frey, H., & Huggel, C. (2021). Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology, 388, 107783. https://doi.org/10.1016/j.geomorph.2021.107783

    Article  Google Scholar 

  • Sattar, A., Haritashya, U. K., Kargel, J. S., & Karki, A. (2022). Transition of a small Himalayan glacier lake outburst flood to a giant transborder flood and debris flow. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-16337-6

    Article  Google Scholar 

  • Shekhar, M., Bhardwaj, A., Singh, S., Ranhotra, P. S., Bhattacharyya, A., Pal, A. K., Roy, I., Martín-Torres, F. J., & Zorzano, M. P. (2017). Himalayan glaciers experienced significant mass loss during later phases of little ice age. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-021-03805-8

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786.

    Article  Google Scholar 

  • Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10(10), 939–945. https://doi.org/10.1038/s41558-020-0855-4

    Article  Google Scholar 

  • Singh, R., Shekhar, M., Pandey, V. K., Kumar, R., & Sharma, R. K. (2018). Causes and geomorphological effects of large debris flows in the lower valley areas of the Meru and Gangotri glaciers, Bhagirathi basin, Garhwal Himalaya (India). Remote Sensing Letters, 9(8), 809–818. https://doi.org/10.1080/2150704X.2018.1484956

    Article  Google Scholar 

  • Singh, V., Misra, K. G., Singh, A. D., Yadav, R. R., & Yadava, A. K. (2021). Little ice age revealed in tree-ring-based precipitation record from the Northwest Himalaya India. Geophysical Research Letters. https://doi.org/10.1029/2020GL091298

    Article  Google Scholar 

  • Stoffel, M., & Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography, 36(3), 421–439. https://doi.org/10.1177/0309133312441010

    Article  Google Scholar 

  • Svetunkov, I. (2022). _greybox: Toolbox for Model Building and Forecasting_. R package version 1.0.6, https://CRAN.R-project.org/package=greybox.

  • Truffer, M., & Motyka, R. J. (2016). Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Reviews of Geophysics, 54(1), 220–239. https://doi.org/10.1002/2015RG000494

    Article  Google Scholar 

  • Tsutaki, S., Nishimura, D., Yoshizawa, T., & Sugiyama, S. (2011). Changes in glacier dynamics under the influence of proglacial lake formation in Rhonegletscher, Switzerland. Annals of Glaciology, 52(58), 31–36. https://doi.org/10.3189/172756411797252194

    Article  Google Scholar 

  • Wang, W., Xiang, Y., Gao, Y., Lu, A., & Yao, T. (2015). Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrological Processes, 29(6), 859–874. https://doi.org/10.1002/hyp.10199

    Article  Google Scholar 

  • Zhao, F., Long, D., Li, X., Huang, Q., & Han, P. (2022). Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2021.112853

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Directors of Birbal Sahni Institute of Palaeosciences, Lucknow and Indian Institute of Remote Sensing—ISRO, Dehradun for providing infrastructure, encouragement and support. The field photos of the Kadu Nala Lake were taken under ISRO sponsored project entitled “Automatic detection of rock glaciers in northwester Himalaya”. We acknowledge Ms. Varsha Pathak, IISER Kolkata, for providing us Planet scenes. We are also thankful to Mr. Sudhir Sharma who was our vehicle support during the field and sincerely helped us in carrying out the work during field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Pandey.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 355 KB)

Supplementary file2 (PDF 253 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.N., Pandey, P., Singh, P. et al. Intimidating Evidences of Climate Change from the Higher Himalaya: A Case Study from Lahaul, Himachal Pradesh, India. J Indian Soc Remote Sens 51, 1099–1112 (2023). https://doi.org/10.1007/s12524-023-01686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01686-0

Keywords

Navigation