Skip to main content

Advertisement

Log in

An Ensemble Hydrologic Modeling System for Runoff and Evapotranspiration Evaluation over an Agricultural Watershed

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Modeling framework for simulation at a finer scale is important for long-term water resources planning for management. It has always been a challenge to select the appropriate model to simulate the hydrology of a watershed/river basin at a finer spatial resolution. Comparative evaluation of models based on field observations could help researchers to select the suitable model for their purpose. However, a single hydrologic model generally leads to simulation uncertainties due to poor input data, model structure, and model output uncertainty in large-scale exercises. The ensemble model approach could be a better decision-making tool to overcome uncertainty in modeling hydrological processes. In the present study, a widely used macroscale hydrologic model, the three-layer Variable Infiltration Capacity (VIC-3L), was employed to simulate runoff and evapotranspiration (ET) at 3′ × 3′ grids (~ 5.5 km) resolution over an agriculture-based Marol watershed (5092 km2) of India. The VIC-simulated results were compared and assessed with the results obtained from the Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWAT) hydrologic model. Further, the ensemble of VIC and SWAT outputs (EnSwaVi; averages of individual model-simulated datasets with equal weights) was also assessed. Simulated runoff and ET were evaluated using observed discharge data at the outlet of the watershed and the actual ET product (MOD16A2) of Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. The simulated discharge values generated by the two models were closely matched with the observed flow. Conversely, ET simulated by VIC was found to be more precise as compared to SWAT. A minimal difference between two model results can be due to the difference in the model structure and runoff simulation method. In general, the ensembles of VIC and SWAT outputs (EnSwaVi) were found better than the individual model outputs. The ensemble modeling approach could provide more reliable assessments of hydrological processes for the planning and management of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aadhar, S., Swain, S., & Rath, D. R. (2019). Application and performance assessment of SWAT hydrological model over Kharun river basin, Chhattisgarh, India. World environmental and water resources congress 2019: Watershed management, irrigation and drainage, and water resources planning and management (pp. 272–280). American Society of Civil Engineers.

    Chapter  Google Scholar 

  • Abbaspour, K. C., Vejdani, M., & Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. In MODSIM 2007- international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand, pp. 1603–1609.

  • Alvarenga, L. A., Carvalho, V. S. O., Oliveira, V. A. D., Mello, C. R. D., Colombo, A., Tomasella, J., & Melo, P. A. (2020). Hydrological simulation with SWAT and VIC Models in the Verde River Watershed, Minas Gerais. Revista Ambiente & Água, 15.

  • Amrit, K., Mishra, S. K., Pandey, R. P., Himanshu, S. K., & Singh, S. (2019). Standardized precipitation index-based approach to predict environmental flow condition. Ecohydrology, 12(7), e2127.

    Article  Google Scholar 

  • Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., Gonzlez-Dugo, M. P., Cammalleri, C., D’Urso, G., Pimstein, A., & Gao, F. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences, 15, 223–239.

    Article  Google Scholar 

  • Arnold, J. G., & Fohrer, N. (2005). SWAT 2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 19(3), 563–572.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development 1. Journal of the American Water Resources Association, 34(1), 73–89.

    Article  Google Scholar 

  • Baker, L., & Ellison, D. (2008). Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144(1–2), 212–224. https://doi.org/10.1016/j.geoderma.2007.11.016

    Article  Google Scholar 

  • Barnes, B. S. (1940). Discussion on analysis of runoff characteristics by O H. Meyer. Transactions of the American Society of Civil Engineers, 105, 104–106.

    Google Scholar 

  • Borah, D. K., Arnold, J. G., Bera, M., Krug, E. C., & Liang, X. Z. (2007). Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Journal of Hydrologic Engineering. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(605),605-616

    Article  Google Scholar 

  • Borah, D. K., & Bera, M. (2003). Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the ASAE, 46(6), 1553.

    Article  Google Scholar 

  • Crawford, N.H., & Linsley, R.K. (1966). Digital simulation in hydrology: Stanford watershed model IV. Technical Report No. 39. Department of Civil Engineering, Stanford University, p. 210.

  • Cummings, N. W. (1935). Evaporation from water surfaces: Status of present knowledge and need for further investigations. Transactions, American Geophysical Union, 16(2), 507–510.

    Article  Google Scholar 

  • Cunge, J. A. (1969). On the subject of a flood propagation computation method (Musklngum method). Journal of Hydraulic Research, 7(2), 205–230.

    Article  Google Scholar 

  • Dash, S. S., Sahoo, B., & Raghuwanshi, N. S. (2021). How reliable are the evapotranspiration estimates by Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models for catchment-scale drought assessment and irrigation planning? Journal of Hydrology, 592, 125838. https://doi.org/10.1016/j.jhydrol.2020.125838

    Article  Google Scholar 

  • Dhami, B., Himanshu, S. K., Pandey, A., & Gautam, A. K. (2018). Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal. Environmental Earth Sciences, 77(1), 21.

    Article  Google Scholar 

  • Dietrich, J., Schumann, A. H., Redetzky, M., Walther, J., Denhard, M., Wang, Y., Pfützner, B., & Büttner, U. (2009). Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions. Natural Hazards and Earth System Sciences, 9(4), 1529–1540. https://doi.org/10.5194/nhess-9-1529-2009

    Article  Google Scholar 

  • Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile river basin. Journal of the American Water Resources Association, 50, 1226–1241. https://doi.org/10.1111/jawr.12182

    Article  Google Scholar 

  • Doblas-Reyes, F. J., Hagedorn, R., & Palmer, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus A: Dynamic Meteorology and Oceanography, 57(3), 234–252. https://doi.org/10.3402/tellusa.v57i3.14658

    Article  Google Scholar 

  • Fair, G. M., & Hatch, L. P. (1933). Fundamental factors governing the streamline flow of water through sand. Journal American Water Works Association, 25, 1551–1565.

    Article  Google Scholar 

  • Fan, Y., Himanshu, S. K., Ale, S., DeLaune, P. B., Zhang, T., Park, S. C., Colaizzi, P. D., Evett, S. R., & Baumhardt, R. L. (2022). The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains. Agricultural Water Management, 262, 107386. https://doi.org/10.1016/j.agwat.2021.107386

    Article  Google Scholar 

  • Garg, K. K., Bharati, L., Gaur, A., George, B., Acharya, S., Jella, K., & Narasimhan, B. (2012). Spatial mapping of agricultural water productivity using the SWAT model in Upper Bhima Catchment India. Irrigation and Drainage, 61(1), 60–79.

    Article  Google Scholar 

  • Gaur, S., Bandyopadhyay, A., & Singh, R. (2021a). From changing environment to changing extremes: Exploring the future streamflow and associated uncertainties through integrated modelling system. Water Resources Management, 35(6), 1889–1911. https://doi.org/10.1007/s11269-021-02817-3

    Article  Google Scholar 

  • Gaur, S., Bandyopadhyay, A., & Singh, R. (2021b). Projecting land use growth and associated impacts on hydrological balance through scenario-based modelling in the Subarnarekha basin. India. Hydrological Sciences Journal, 66(14), 1997–2010. https://doi.org/10.1080/02626667.2021.1976408

    Article  Google Scholar 

  • Gaur, S., Singh, B., Bandyopadhyay, A., Stisen, S., & Singh, R. (2022). Spatial pattern‐based performance evaluation and uncertainty analysis of a distributed hydrological model. Hydrological Processes. https://doi.org/10.1002/hyp.14586

    Article  Google Scholar 

  • Green, W. H., & Ampt, G. A. (1911). Studies on soil physics, 1. The flow of air and water through soils. Journal of Agricultural Sciences, 4, 11–24.

    Google Scholar 

  • Gupta, A., Himanshu, S. K., Gupta, S., & Singh, R. (2020). Evaluation of the SWAT model for analysing the water balance components for the upper Sabarmati Basin. In R. AlKhaddar, R. K. Singh, S. Dutta, & M. Kumari (Eds.), Advances in Water Resources Engineering and Management: Select Proceedings of TRACE 2018 (pp. 141–151). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-8181-2_11

    Chapter  Google Scholar 

  • Hengade Narendra, T. I., & Eldho, G. S. (2017). Hydrological simulation of a large catchment using the variable infiltration capacity model. In V. Garg, V. P. Singh, & V. Raj (Eds.), Development of water resources in India (pp. 19–30). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-55125-8_2

    Chapter  Google Scholar 

  • Himanshu, S. K., Pandey, A., & Dayal, D. (2018a). Evaluation of satellite-based precipitation estimates over an agricultural watershed of India. World environmental and water resources congress 2018: watershed management, irrigation and drainage, and water resources planning and management (pp. 308–320). American Society of Civil Engineers.

    Chapter  Google Scholar 

  • Himanshu, S. K., Pandey, A., & Patil, A. (2018b). Hydrologic evaluation of the TMPA-3B42V7 Precipitation data set over an agricultural watershed using the SWAT model. Journal of Hydrologic Engineering, 23(4), 05018003.

    Article  Google Scholar 

  • Himanshu, S. K., Pandey, A., & Shrestha, P. (2017). Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environmental Earth Sciences, 76(1), 3.

    Article  Google Scholar 

  • Himanshu, S. K., Pandey, A., Yadav, B., & Gupta, A. (2019). Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil and Tillage Research, 192, 42–58. https://doi.org/10.1016/j.still.2019.04.016

    Article  Google Scholar 

  • Horan, R., Gowri, R., Wable, P. S., Baron, H., Keller, V. D., Garg, K. K., Mujumdar, P. P., Houghton-Carr, H., & Rees, G. (2021). A comparative assessment of hydrological models in the Upper Cauvery catchment. Water, 13(2), 151. https://doi.org/10.3390/w13020151

    Article  Google Scholar 

  • Horton, R. E. (1919). Rainfall interception. Monthly Weather Review, 147, 603–623.

    Article  Google Scholar 

  • Horton, R. E. (1939). Analysis of runoff-plat experiments with varying infiltration-capacity. Transactions, American Geophysical Union, 20(4), 693. https://doi.org/10.1029/TR020i004p00693

    Article  Google Scholar 

  • Hu, H., Wang, G., Bi, X., Yang, F., & Chongyi, E. (2007). Application of two hydrological models to Weihe River basin: a comparison of VIC-3L and SWAT. In Geoinformatics 2007: Geospatial Information Technology and Applications (Vol. 6754, p. 67541T). International Society for Optics and Photonics. https://doi.org/10.1117/12.764920

  • ICWE: International Conference on Water and the Environment. (1992). Dublin, Ireland. http://www.wmo.int/pages/prog/hwrp/documents/english/icwedece.html

  • Jacob, C. E. (1943). Correlation of groundwater levels and precipitation on Long Island, New York: 1. Theory. Transactions, American Geophysical Union, 24, 564–573.

    Article  Google Scholar 

  • Jacob, C. E. (1944). Correlation of groundwater levels and precipitation on Long Island, New York: 2. Correlation of data. Transaction, American Geophysical Union, 24, 321–386.

    Google Scholar 

  • Jajarmizadeh, M., Harun, S., Ghahraman, B., & Mokhtari, M. H. (2012). Modeling daily stream flow usingplant evapotranspiration method. International Journal of Water Resources and Environmental Engineering, 4(6), 218–226.

    Google Scholar 

  • Kang, H., & Sridhar, V. (2018). Improved drought prediction using near real-time climate forecasts and simulated hydrologic conditions. Sustainability, 10(6), 1799. https://doi.org/10.3390/su10061799

    Article  Google Scholar 

  • Kang, H., Sridhar, V., & Ali, S. A. (2022). Climate change impacts on conventional and flash droughts in the Mekong River Basin. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2022.155845

    Article  Google Scholar 

  • Kasiviswanathan, K. S., & Sudheer, K. P. (2017). Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models. Stochastic Environmental Research and Risk Assessment, 31(7), 1659–1670. https://doi.org/10.1007/s00477-016-1369-5

    Article  Google Scholar 

  • Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., & Thielen, J. (2016). Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling & Software, 75, 68–76. https://doi.org/10.1016/j.envsoft.2015.09.009

    Article  Google Scholar 

  • Keulegan, G. H. (1944). Spatially variable discharge over a sloping plane. Transactions, American Geophysical Union, 25(6), 956. https://doi.org/10.1029/TR025i006p00956

    Article  Google Scholar 

  • Kimball, J. S., Running, S. W., & Nemani, R. (1997). An improved method for estimating surface humidity from daily minimum temperature. Agricultural and Forest Meteorology, 85(1–2), 87–98.

    Article  Google Scholar 

  • Kumar, A., Kumar, M., Pandey, R., ZhiGuo, Y., & Cabral-Pinto, M. (2021a). Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to nature based climate solutions. CATENA, 207, 105667.

    Article  Google Scholar 

  • Kumar, A., Singh, R., Jena, P. P., Chatterjee, C., & Mishra, A. (2015). Identification of the best multi-model combination for simulating river discharge. Journal of Hydrology, 525, 313–325. https://doi.org/10.1016/j.jhydrol.2015.03.060

    Article  Google Scholar 

  • Kumar, A., Taxak, A. K., Mishra, S., & Pandey, R. (2021b). Long term trend analysis and suitability of water quality of River Ganga at Himalayan hills of Uttarakhand. India. Environmental Technology & Innovation, 22, 101405.

    Article  Google Scholar 

  • Kumar, R., & Nandagiri, L. (2015). Evaluating uncertainty of the soil and water assessment tool (SWAT) model in the upper Cauvery basin. Karnataka.

    Google Scholar 

  • Li, Z., Yu, J., Xu, X., Sun, W., Pang, B., & Yue, J. (2018). Multi-model ensemble hydrological simulation using a BP neural network for the upper Yalongjiang River Basin, China. Proceedings of the International Association of Hydrological Sciences, 379, 335–341. https://doi.org/10.5194/piahs-379-335-2018

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415–14428.

    Article  Google Scholar 

  • Liu, Y., & Gupta, H. V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resources Research. https://doi.org/10.1029/2006WR005756

    Article  Google Scholar 

  • Liu, Y. R., Li, Y. P., Huang, G. H., Zhang, J. L., & Fan, Y. R. (2017). A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model. Journal of Hydrology, 553, 750–762. https://doi.org/10.1016/j.jhydrol.2017.08.048

    Article  Google Scholar 

  • Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998). Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological sciences journal, 43(1), 131–141.

  • Madolli, M. J., Himanshu, S. K., Patro, E. R., & De Michele, C. (2022). Past, present and future perspectives of seasonal prediction of Indian summer monsoon rainfall: A review. Asia-Pacific Journal of Atmospheric Sciences, 58(4), 591–615. https://doi.org/10.1007/s13143-022-00273-6

    Article  Google Scholar 

  • Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20, 161–207.

    Google Scholar 

  • Masters, T. (1993). Practical neural network recipes in C++. Academic Press.

    Google Scholar 

  • Mendoza, P. A., Rajagopalan, B., Clark, M. P., Cortés, G., & McPhee, J. (2014). A robust multi-model framework for ensemble seasonal hydroclimatic forecasts. Water Resources Research, 50(7), 6030–6052. https://doi.org/10.1002/2014WR015426

    Article  Google Scholar 

  • Miller, S. N., Semmens, D. J., Goodrich, D. C., Hernandez, M., Miller, R. C., Kepner, W. G., & Guertin, D. P. (2007). The automated geospatial watershed assessment tool. Environmental Modelling & Software, 22(3), 365–377.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Article  Google Scholar 

  • Muhammad, A., Stadnyk, T. A., Unduche, F., & Coulibaly, P. (2018). Multi-model approaches for improving seasonal ensemble streamflow prediction scheme with various statistical post-processing techniques in the Canadian Prairie region. Water, 10(11), 1604. https://doi.org/10.3390/w10111604

    Article  Google Scholar 

  • Murty, P. S., Pandey, A., & Suryavanshi, S. (2014). Application of semi-distributed hydrological model for basin level water balance of the Ken basin of Central India. Hydrological Processes, 28(13), 4119–4129.

    Article  Google Scholar 

  • Nash, J., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J.G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute Technical Report No. 406, Texas A & M University System, College Station, Texas.

  • NRSC. (2014). Land Use/Land Cover database on 1:50,000 scale, Natural Resources Census Project, LUCMD, LRUMG, RSAA, National Remote Sensing Centre, ISRO, Hyderabad.

  • Oubeidillah, A. A., Kao, S. C., Ashfaq, M., Naz, B. S., & Tootle, G. (2014). A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US. Hydrology and Earth System Sciences, 18(1), 67–84.

    Article  Google Scholar 

  • Pai, D. S., Sridhar, L., Badwaik, M. R., & Rajeevan, M. (2015). Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25× 0.25) gridded rainfall data set. Climate Dynamics, 45(3–4), 755–776.

    Article  Google Scholar 

  • Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., & Mukhopadhyay, B. (2014). Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18.

    Article  Google Scholar 

  • Palmate, S. S., & Pandey, A. (2021). Effectiveness of best management practices on dependable flows in a river basin using hydrological SWAT Model. In S. K. Ashish Pandey, M. L. Mishra, R. D. Kansal, & V. P. S. Singh (Eds.), Water management and water governance: hydrological modeling (pp. 335–348). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-58051-3_22

    Chapter  Google Scholar 

  • Palmate, S. S., Wagner, P. D., Fohrer, N., & Pandey, A. (2021). Assessment of uncertainties in modelling land use change with an integrated cellular automata–Markov chain model. Environmental Modeling & Assessment. https://doi.org/10.1007/s10666-021-09804-3

    Article  Google Scholar 

  • Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620.

    Article  Google Scholar 

  • Pandey, A., & Palmate, S. S. (2019). Assessing future water–sediment interaction and critical area prioritization at sub-watershed level for sustainable management. Paddy and Water Environment, 17(3), 373–382. https://doi.org/10.1007/s10333-019-00732-3

    Article  Google Scholar 

  • Paul, P. K., Zhang, Y., Ma, N., Mishra, A., Panigrahy, N., & Singh, R. (2021). Selecting hydrological models for developing countries: Perspective of global, continental, and country scale models over catchment scale models. Journal of Hydrology, 600, 126561.

    Article  Google Scholar 

  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, 193, 120–145.

    Google Scholar 

  • Rathjens, H., Oppelt, N., Bosch, D. D., Arnold, J. G., & Volk, M. (2015). Development of a grid-based version of the SWAT landscape model. Hydrological Processes, 29(6), 900–914.

    Article  Google Scholar 

  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. Journal of the American Water Resources Association, 49(3), 577–591.

    Article  Google Scholar 

  • Shiklomanov, I. A. (1998). World water resources. A new appraisal and assessment for the twenty first century. UNESCO, Paris.

  • Shivaprasad, C. R., Reddy, R. S., Sehgal, J., & Velayutham, M. (1998). Soils of Karnataka for optimizing land use. NBSS Publ. 47b (Soils of India Series). Nagpur, India: National Bureau of Soil Survey and Land Use Planning.

  • Soil Conservation Service (SCS). (1956). Supplement A, Section 4, Chapter 10, Hydrology. National engineering handbook, USDA, Washington D.C.

  • Srivastava, A. K., Raajeevan, M., & Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters, 10(October), 249–254.

    Google Scholar 

  • Srivastava, A., Sahoo, B., Raghuwanshi, N. S., & Singh, R. (2017). Evaluation of variable-infiltration capacity model and MODIS-terra satellite-derived grid-scale evapotranspiration estimates in a river basin with tropical monsoon-type climatology. Journal of Irrigation and Drainage Engineering, 143(8), 04017028.

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., & Pandey, A. (2021). A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin India. Environmental Earth Sciences, 80(6), 221.

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., Pandey, A. C., Jain, A., Chauhan, S. K., & Badoni, A. K. (2022). Hydrological modelling through SWAT over a Himalayan catchment using high-resolution geospatial inputs. Environmental Challenges, 8, 100579.

    Article  Google Scholar 

  • Tanmoyee, B., Raju, P. V., & Hakeem, A. (2015). Climate change impact on snowmelt runoff modelling for Alaknanda river basin. Journal of Environment and Earth Science, 5(11), 56–67.

    Google Scholar 

  • Theis, C. V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of well using ground-water storage. Transactions, American Geophysical Union, 16, 519–524.

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Tokar, A. S., & Johnson, P. A. (1999). Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4(3), 232–239.

    Article  Google Scholar 

  • USDA Soil Conservation Service. (1972). Hydrolog. In V. Mockus (Ed.), National engineering Handboo. Washington, DC: US Department of Agriculture-Soil Conservation Service.

    Google Scholar 

  • Veettil, A. V., Mishra, A. K., & Green, T. R. (2022). Explaining Water security indicators using hydrologic and agricultural systems models. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2022.127463

    Article  Google Scholar 

  • Water facts. (2020). Worldwide water supply. Bureau of Reclamation California-Great Basin. https://www.usbr.gov/mp/arwec/water-facts-ww-water-sup.html (Accessed 20 July 2022).

  • Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995–9005.

    Article  Google Scholar 

  • Xu, H., Taylor, R. G., Kingston, D. G., Jiang, T., Thompson, J. R., & Todd, M. C. (2010). Hydrological modeling of River Xiangxi using SWAT2005: A comparison of model parameterizations using station and gridded meteorological observations. Quaternary International, 226(1–2), 54–59.

    Article  Google Scholar 

  • Yadav, B., Gupta, P. K., Patidar, N., & Himanshu, S. K. (2020). Ensemble modelling framework for groundwater level prediction in urban areas of India. Science of the Total Environment, 712, 135539. https://doi.org/10.1016/j.scitotenv.2019.135539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar Himanshu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1396 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himanshu, S.K., Pandey, A., Madolli, M.J. et al. An Ensemble Hydrologic Modeling System for Runoff and Evapotranspiration Evaluation over an Agricultural Watershed. J Indian Soc Remote Sens 51, 177–196 (2023). https://doi.org/10.1007/s12524-022-01634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01634-4

Keywords

Navigation