Skip to main content

Advertisement

Log in

Impact of the Upper Ocean Processes on Intensification of Cyclone Amphan

  • Review Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Cyclone Amphan is one of the severe cyclones that occurred over the Bay of Bengal region. It has undergone rapid intensification over the northern part, i.e., north of 14° N after its formation. This can be attributed to the intrusion of warm saline waters with temperatures around 31 °C, salinity greater than 33 psu from the coast, and the presence of anticyclonic eddy that moved across the track. Within an anticyclonic eddy sinking, warm, high saline waters are promoted further sinking through diffusive convective mixing processes. Analysis of in situ and model data showed that these waters formed as a thick water column with high heat content in the northern part of the track, which in turn helped the rapid intensification of cyclone Amphan. This thick water column was also clearly evident in tropical cyclone heat potential. A high chlorophyll concentration of 4.5 – 5.3 mg/m3 was observed before the saline water intrusion across the cyclone path. North of 15oN, a sudden drop in the surface chlorophyll concentration of 0.2–1 mg/m3was observed, which can be attributed to further sinking of saltwater due to vertical convective mixing, which suppressed the cyclone-induced upwelling over this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adcroft, A., & Campin, J.-M. (2004). Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modelling, 7, 269–284.

    Article  Google Scholar 

  • Adcroft, A., Hill, C., & Marshall, J. (1997). Representation of topography by shaved cells in a height coordinate ocean model. Monthly Weather Review, 125, 2293–2315.

    Article  Google Scholar 

  • Ali, M. M., Jagadeesh, P., & Jain, S. (2007). Effects of Eddies on Bay of Bengal Cyclone Intensity. Eos, Transactions American Geophysical Union. https://doi.org/10.1029/2007EO080001

    Article  Google Scholar 

  • Balaguru, K., Taraphdar, S., Leung, L. R., & Foltz, G. R. (2014). Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophysical Research Letters, 41, 3594–3601. https://doi.org/10.1002/2014GL060197

    Article  Google Scholar 

  • Banzon, V., Smith, T. M., Chin, T. M., Liu, C., & Hankins, W. (2016). A long-term record of blended satellite and in situ seasurface temperature for climate monitoring and environmental studies. Earth System Science Data, 8, 165–176. https://doi.org/10.5194/essd-8-165-2016

    Article  Google Scholar 

  • Boyer, T. P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T. D. O’Brien, C. R. Paver, J. R. Reagan, D. Seidov, I. V. Smolyar, M. M. Zweng, 2013, World Ocean Database 2013. S. Levitus, Ed., A. Mishonov Technical Editor, NOAA Atlas NESDIS 72.

  • Bretherton, F. P., Davis, R. E., & Fandry, C. B. (1976). A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Research, 23, 559–582.

    Google Scholar 

  • Chacko, N., & Jayaram, C. (2021). Response of the Bay of Bengal to super cyclone Amphan examined using synergistic satellite and in-situ observations. Oceanologia, ISSN. https://doi.org/10.1016/j.oceano.2021.09.006

    Article  Google Scholar 

  • Dee, D., & Coauthors,. (2011). The Era-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dibarboure, G., J. Dorandeu, P.-Y. Le Traon and N. Picot, 2006: SSALTO/DUACS : 15 years of precise and consistent multi-mission altimetry data. Proceedings of 15 Years of progress in Radar Altimetry Symposium, ESA Special Publication, SP614.

  • Dunne, J. P., John, J. G., Hallberg, R. W., Griffies, S. M., Shevliakova, E. N., Stouffer, R. J., Krasting, J. P., Sentman, L. A., Milly, P. C. D., Malyshev, S. L., Adcroft, A. J., Cooke, W., Dunne, K. A., Harrison, M. J., Levy, H., Wittenberg, A., Phillips, P., Zadeh, N. (2012b). GFDLs ESM2 global coupled climate-carbon Earth System Models Part II: Carbon system formulation and baseline simulation characteristics. Journal of Climate.

  • Girishkumar, M. S., & Ravichandran, M. (2012). The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. Journal of Geophysical Research, 117, C02033. https://doi.org/10.1029/2011JC007417

    Article  Google Scholar 

  • Guinehut S., P.-Y. Le Traon and G. Larnicol, (2006). What can we lean from Global Altimetry/Hydrography comparisons? Geophysics Research Letters in press.

  • Guinehut, S., Dhomps, A.-L., Larnicol, G., & Le Traon, P.-Y. (2012). High resolution 3D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5), 845–857.

    Article  Google Scholar 

  • Guinehut, S., Le Traon, P.-Y., Larnicol, G., & Philipps, S. (2004). Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields – a first approach based on simulated observations. Journal of Marine System, 46, 85–98.

    Article  Google Scholar 

  • Johnson, D.R., T.P. Boyer, H.E. Garcia, R.A. Locarnini, O.K. Baranova, and M.M. Zweng (2013). World Ocean Database 2013 User’s Manual. Sydney Levitus, Ed.; Alexey Mishonov, Technical Ed.; NODC Internal Report 22, NOAA Printing Office, Silver Spring, MD, 172 pp. Available at http://www.nodc.noaa.gov/OC5/WOD13/.

  • Kaplan, J., & DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and Forecasting, 18, 1093–1108.

    Article  Google Scholar 

  • Latha, T. P., Rao, K. H., Nagamani, P. V., Amminedu, E., Choudhury, S. B., Dutt, C. B. S., & Dadhwal, V. K. (2015). Impact of Cyclone PHAILIN on chlorophyll-a concentration and productivity in the Bay of Bengal. International Journal of Geosciences, 6, 473–480. https://doi.org/10.4236/ijg.2015.65037

    Article  Google Scholar 

  • Lin, I. I., Liu, W. T., Wu, C. C., Wong, G. T. F., Chen, C., Hu, Z., Liang, W. D., Yang, Y., & Liu, K. K. (2003). New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30, 1718. https://doi.org/10.1029/2003GL017141

    Article  Google Scholar 

  • Liu, Y., & LÜ H, Zhang H, Cui Y, Xing X,. (2021). Effects of ocean eddies on the tropical storm Roanu intensity in the Bay of Bengal. PLoS ONE, 16(3), e0247521.

    Article  Google Scholar 

  • Madhu, N. V., Maheswaran, P. A., Jyothibabu, R., Sunil, V., Revichandran, C., Balasubramanian, T., Gopalakrishnan, T. C., & Nair, K. C. (2002). Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa). Current Science, 82, 1472–1479.

    Google Scholar 

  • Maneesha, K., Murty, V. S. N., Ravichandran, M., Lee, T., Yu,  W., & McPhaden, M. J. (2012). Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Progress in Oceanography, 106, 9–61.

    Article  Google Scholar 

  • Maneesha, K., Prasad, D. H., & Patnaik, K. V. K. R. K. (2019). Biophysical responses to tropical cyclone Hudhud over the Bay of Bengal. Journal of Operator Oceanogr. https://doi.org/10.1080/1755876X.2019.1684135

    Article  Google Scholar 

  • Maneesha, K., Sadhuram, Y., & Prasad, K. V. (2015). Role of upper ocean parameters in the genesis, intensification and tracks of cyclones over the Bay of Bengal. Journal of Operator Oceanogr, 8, 133–146.

    Google Scholar 

  • Maneesha, K., Sarma, V. V. S. S., Reddy, N. P. C., Sadhuram, Y., Ramana Murty, T. V., Sarma, V. V., & Dileep, K. M. (2011). Meso-scale atmospheric events promote phytoplankton blooms in the coastal Bay of Bengal. Journal of Earth System Science, 120, 773–782.

    Article  Google Scholar 

  • Maneesha, K., SivaPrasad, V., & Venkateswararao, K. (2021). Ocean impact on the intensification of cyclone Titli. Journal of Earth System Science. https://doi.org/10.1007/s12040-021-01660-9;130-164

    Article  Google Scholar 

  • McDougall, T. J., Thorpe, S. A., & Gibson, C. H. (1988). Small-scale turbulence and mixing in the ocean: A glossary. In J. C. J. Nihoul & B. M. Jamart (Eds.), Small-scale turbulence and mixing in the ocean (pp. 3–9). Elsevier.

    Google Scholar 

  • Murray, R. (1996). Explicit generation of orthogonal grids for ocean models. Journal of Computational Physics, 126, 251–273.

    Article  Google Scholar 

  • Nadimpalli, R., Mohanty, S., Pathak, N., et al. (2021). Understanding the characteristics of rapid intensity changes of Tropical Cyclones over North Indian Ocean. SN Application Science, 3, 68. https://doi.org/10.1007/s42452-020-03995-2

    Article  Google Scholar 

  • Neetu, S., Lengaigne, M., Vincent, E. M., et al. (2012). Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. Journal of Geophysics Research Ocean, 117, 1–19. https://doi.org/10.1029/2012JC008433

    Article  Google Scholar 

  • Pacanowski, R. C., & Gnanadesikan, A. (1998). Transient response in a z-level ocean model that resolves topography with partial-cells. Monthly Weather Review, 126, 3248–3270.

    Article  Google Scholar 

  • Patnaik, K.V.K.R.K, Maneesha, K , Sadhuram, Y, Prasad, K.V.S.R, Ramana Murty, T.V, Brahmananda Rao, R (2014) East India coastal current induced eddies and their interaction with tropical storms over bay of bengal. Journal of Operational Oceanography, 7(1), 58–68. https://doi.org/10.1080/1755876X.2014.11020153

    Article  Google Scholar 

  • Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11, 153–175.

    Article  Google Scholar 

  • Reynolds, R. W., & Smith, T. M. (1994). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929–948.

    Article  Google Scholar 

  • Reynolds, R. W., Smitha, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high resolution blended analysis of sea surface temperature. Journal of Climate, 20, 5473–5496. https://doi.org/10.1175/JCLI-D-14-00293.1

    Article  Google Scholar 

  • Ruddick, B. (1983). A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Research, 30, 1105–1107.

    Article  Google Scholar 

  • Sadhuram, Y. (2004). Record decrease of sea surface temperature following the passage of a super cyclone over the Bay of Bengal. Current Science, 86(3), 383–384.

    Google Scholar 

  • Sadhuram, Y., Maneesha, K., & Murty, T. W. R. (2012). Intensification of Aila (May 2009) due to a warm core eddy in the North Bay of Bengal. Natural Hazards, 63, 1515–1525.

    Article  Google Scholar 

  • Sasamal, S. K. (1990). High saline waters in Bay of Bengal. Proceedings of Indian Acadamic of Science (earth Planet Science), 99, 367–381. https://doi.org/10.1007/BF02841865

    Article  Google Scholar 

  • Schlitzer, R. (2013). Ocean Data View, http://odv.awi.de, 2013.

  • Sengupta, D., Goddalehundi, B. R., & Anitha, D. (2008). Cyclone-induced mixing does not cool sst in the post-monsoon north bay of bengal. Atmosphere Science Letters, 9(1), 1–6.

    Article  Google Scholar 

  • Sengupta, D., Ray, P. K., & Bhat, G. (2002). Spring warming of the eastern arabian sea and bay of bengal from buoy data. Geophysical Research Letters, 29(15), 1–24.

    Article  Google Scholar 

  • Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effect of a warm ocean ring on hurricane Opal. Monthly Weather Review, 128, 1366–1383.

    Article  Google Scholar 

  • Sil, S., Gangopadhyay, A., Gawarkiewicz, G., et al. (2021). Shifting seasonality of cyclones and western boundary current interactions in Bay of Bengal as observed during Amphan and Fani. Science and Reports, 11, 22052. https://doi.org/10.1038/s41598-021-01607-6

    Article  Google Scholar 

  • Stacey, M. W., Pond, S., & Nowak, Z. P. (1995). A numerical model of the circulation in Knight Inlet, British Columbia, Canada. Journal of Physical Oceanography, 25, 1037–1062.

    Article  Google Scholar 

  • Upper ocean variability in the Bay of Bengal during the Tropical Cyclones Nargis and Laila. Programme Oceanograph, 106, 49–61.

  • Vinayachandran, P., Y. Masumoto, T. Mikawa, and T. Yamagata. (1999). Intrusion of the southwest monsoon current into the Bay of Bengal. Journal of Geophysics of Research, 104, 11 077–11 085, https://doi.org/10.1029/1999JC900035

  • Vinayachandran, P., Shankar, D., Vernekar, S., Sandeep, K., Amol, P., Neema, C., & Chatterjee, A. (2013). A summer monsoon pump to keep the Bay of Bengal salty. Geophysical Research Letters, 40, 1777–1782.

    Article  Google Scholar 

  • W. D. Whitaker (1967). Quantitative determination of heat transfer from sea to air during passage of hurricane Betsy; Environmental Science.

Download references

Acknowledgments

The authors acknowledge the Director, CSIR-NIO and Scientist-in-Charge for their support and for providing the facilities. The authors are thankful to Dr. Rashmi Sharma and Dr. Mini Raman, Space Application Centre, Ahmedabad for their encouragement and support. The authors thank ISRO for providing funds through ISRO RESPOND Project OGP-204. This has the NIO contribution number 6949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maneesha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneesha, K., Ratheesh, S. & Bhaskar, T.V.S.U. Impact of the Upper Ocean Processes on Intensification of Cyclone Amphan. J Indian Soc Remote Sens 51, 289–298 (2023). https://doi.org/10.1007/s12524-022-01592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01592-x

Keywords

Navigation