Skip to main content

Advertisement

Log in

OpenLDM: Open-Source Land-Use and Land-Cover Dynamics Modeling Platform

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Land-use planners, climate researchers, and policymakers require a transparent land-use and land-cover (LULC) change modeling software, supporting various aspects of iterative modeling life cycle through integrated but loosely coupled modules built using appropriate techniques into a single platform. With this premise, an ‘Open-source Land-use and Land-cover Dynamics Modeling platform’ (OpenLDM) is developed and presented in this paper. The platform integrates different components of empirical land change modeling cycle such as model selection from the available parametric and nonparametric methods; suitability map generation; demand generation; allocation (in spatial or non-spatial context); simulation of future LULC map based on business-as-usual or demand-and-policy-driven scenarios; accuracy assessment; and visualization. Suitability maps for each LULC class can be generated using techniques like regression (logistic and linear), artificial neural network (ANN), and random forest (RF) and user-controlled spatial context. The statistical aids provided for parametric methods help selecting relevant drivers for each LULC class. The support for policy interventions such as goal-specific LULC class demand distribution, land conversion prioritization, and control over spatial mobility of land classes are possible by providing LULC demand, allocation-priority matrix, and class-inertia parameters. R and Python programming languages are used for development, considering portability to other open-source platforms. A case example presented here demonstrates the capabilities of the OpenLDM and the advantages of loose framework. It also illustrates estimation of optimum modeling parameters with improved quantitative and location agreement, selection of appropriate method(s) for generation of suitability maps for individual LULC classes under demand constraints and class-migration restrictions. The OpenLDM will be useful to researchers engaged in the domain of land system, ecosystem, and climate sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source Land-use Land-cover Dynamics Modeling platform (OpenLDM)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data can be downloaded from https://github.com/ashutoshkumarjha/OpenLDM/examples

Code Availability

Name of Software: OpenLDM-1.0. Developers: Ashutosh Kumar Jha. Contact details: GID, Indian Institute of Remote Sensing (IIRS), ISRO, Dehradun,Uttarakhand, India-248001; email:akjha@iirs.gov.in. Year first available: 2021. Hardware requirement: OpenLDM was run on computers with 4–16 cores (2.4–3.1 GHz) and 8 128 GB RAM. OS requirement: macOS Catalina/Linux Ubuntu/Windows 10. Software requirements: R for command prompt [Python3 and PyQt for GUI version; Anaconda environment]. Program size: 22 MB including GUI, test data and help files. Source code availability: OpenLDM can be downloaded from https://github.com/ashutoshkumarjha/OpenLDM

References

  • Agarwal, C., Green, G.M., Grove, J.M., Evans, T.P., Schweik, C.M., (2002). A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice. U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station. https://doi.org/10.2737/NE-GTR-297.

  • Bader El Den, M., Badreddin, E., Kotb, Y., R diger, J., (2005). A game theoretic model of cooperation and non-cooperation for soccer playing robots. IFAC Proceedings Volumes (IFAC-Papers Online) 16, 601–606. https://doi.org/10.3182/20050703-6-CZ-1902.01370.

  • Bansal, S. (2019). Understanding the land-use/land-cover change processes and predicting future scenario in Yamuna Basin, India. Ph.D. Thesis, FRI University, Dehradun.

  • Bansal, S., Srivastav, S. K., & Jha A. K. (2016a). Projecting future patterns of land-use land-cover in Yamuna river basin (India) using spatially explicit models. Proc. ISRS-ISG Symposium, 2016, Dehradun.

  • Bansal, S., Srivastav, S. K., Roy, P. S., & Krishnamurthy, Y. V. N. (2016b). An analysis of land use and land cover dynamics and causative drivers in a thickly populated Yamuna river basin of India. Applied Ecology and Environmental Research, 14, 773–792. https://doi.org/10.15666/aeer/1403_773792

    Article  Google Scholar 

  • Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., (1984). Classification and Regression Trees. Wadsworth International Group. ISBN: 9780534980535

  • Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environment and Planning b: Planning and Design, 24, 247–261. https://doi.org/10.1068/b240247

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  • Das, P., Behera, M. D., Patidar, N., Sahoo, B., Tripathi, P., Behera, P. R., Srivastava, S. K., & Roy, P. S. (2018). Impact of lulc change on the runoff, base flow and evapotranspiration dynamics in eastern Indian River basins during 1985–2005 using variable infiltration capacity approach. Journal of Earth System Science, 127, 19. https://doi.org/10.1007/s12040-018-0921-8

    Article  Google Scholar 

  • Deming, W. E., & Stephan, F. F. (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. The Annals of Mathematical Statistics, 11, 427–444.

    Article  Google Scholar 

  • Garg, V., Nikam, B., Gupta, P., Srivastava, A., Aggarwal, S., Srivastav, S. (2017). Impact of lulc change on hydrological regime of Krishna basin, in: 3rd International Conference on the Status and Future of the Worlds Large Rivers.

  • Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., & Srivastav, S. K. (2019). Human-induced land use land cover change and its impact on hydrology. HydroResearch, 1, 48–56. https://doi.org/10.1016/j.hydres.2019.06.001.

    Article  Google Scholar 

  • Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over eastern India. Scientific Reports, 9, 8859. https://doi.org/10.1038/s41598-019-45213-z

    Article  Google Scholar 

  • Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development. https://doi.org/10.1016/j.envdev.2020.100527

    Article  Google Scholar 

  • Hijmans, R., (2019). raster: Geographic data analysis and modeling. Retrieved November 23, 2020, from https://CRAN.R-project.org/package=raster.

  • IIRS, (2014). Land Use/Land Cover (LULC) Dynamics Modeling Platform, User Guide Ver1.0, Feb 2014.

  • IIRS, (2016). ISRO-GBP Project: Land Use and Land Cover Dynamics and Impact of Human Dimensions in Indian River Basins – Decadal Land Use and Land Cover Status, Dynamics & Future Projection . Technical Report, Indian Institute of Remote Sensing, Dehradun, July, 2016. Reference No- IIRS/RSGG/Technical Report/2016/193.

  • Jarvis, A., Reuter, H., Nelson, A., Guevara, E., (2008). Hole-filled srtm for the globe version 4, available from the cgiar-csi srtm 90m database. International Centre for Tropical Agriculture (CIAT) , URL: http:/srtm.csi.cgiar.org.

  • Jha, A.K., Srivastav, S.K., Murthy, Y.V.N.K., Roy, P.S. (2015). Development of a land change modeling platform using open source tools and technologies, in: Second National Conference on Free and Open Source Software for Geospatial (FOSS4G-India), pp. 1–1.

  • Jiang, L., & Zhang, Y. (2016). Modeling urban expansion and agricultural land conversion in Henan province, china: An integration of land use and socioeconomic data. Sustainability, 8(9), 920. https://doi.org/10.3390/su8090920

    Article  Google Scholar 

  • Kale, M. P., Chavan, M., Pardeshi, S., Joshi, C., Verma, P. A., Roy, P. S., et al. (2016). Land-use and land-cover change in Western Ghats of India. Environmental Monitoring and Assessment, 188(7), https://doi.org/10.1007/s10661-016-5369-1.

    Article  Google Scholar 

  • Labs, C. (2012). Land Change Modeler. Manual, URL: http://www.clarklabs.org/.

  • Liaw, A., Wiener, M. (2002). Classification and regression by randomforest. R News 2, 18–22. URL: http://CRAN.R-project.org/doc/Rnews/.

  • Marschner, I. C. (2011). glm2: Fitting generalized linear models with convergence problems. The R Journal, 3, 12–15.

    Article  Google Scholar 

  • Microsoft, C., Weston, S. (2018). doparallel: Foreach parallel adaptor for the ’parallel’ package. Retrieved From: https://CRAN.R-project.org/package= doParallel. R package version 1.0.14.

  • Mondal, I., Srivastava, V.K., Roy, P.S., Talukdar, G. (2014). Using logit model to identify the drivers of Landuse Landover change in the lower Gangetic basin, India. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives XL-8, 853–859. doi:10.5194/ isprsarchives-XL-8-853-2014.

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the American Association of Geographers, 93, 314–337. https://doi.org/10.1111/1467-8306.9302004

    Article  Google Scholar 

  • Peltonen-Sainio, P., Jauhiainen, L., Laurila, H., Sorvali, J., Honkavaara, E., Wittke, S., Karjalainen, M., & Puttonen, E. (2019). Land use optimization tool for sustainable intensification of high-latitude agricultural systems. Land Use Policy, 88, 104104. https://doi.org/10.1016/j.landusepol.2019.104104

    Article  Google Scholar 

  • Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering & Remote Sensing, 66, 1011–1016.

    Google Scholar 

  • Pontius, R. G., & Millones, M. (2011). Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32, 4407–4429. https://doi.org/10.1080/01431161.2011.552923

    Article  Google Scholar 

  • Pontius, R. G., & Santacruz, A. (2014). Quantity, exchange, and shift components of difference in a square contingency table. International Journal of Remote Sensing, 35, 7543–7554. https://doi.org/10.1080/2150704X.2014.969814

    Article  Google Scholar 

  • Pratomoatmojo, N. A. (2018). LanduseSim Algorithm: Land use change modelling by means of Cellular Automata and Geographic Information System. IOP Conference Series: Earth and Environmental Science, 202, 012020. https://doi.org/10.1088/1755-1315/202/1/012020

    Article  Google Scholar 

  • R Core Team (2019). Parallel: Simple network of workstations. Retrieved 7, Jan 2020, from https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf.

  • R Core Team (2020). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.

  • Ripley, B., Venables, W. (2016). Feed-forward neural networks and multinomial log-linear models. URL: https://cran.r-project.org/package=nnet.

  • Rossiter, D.G. (2014). Technical Note: Statistical methods for accuracy assessment of classified thematic maps. Technical Report. Faculty of GeoInformation Science & Earth Observation (ITC) Enschede (NL). Retrieved on July 6, 2015 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.247&rep=rep1&type=pdf.

  • Roy, P. S., et al. (2015). Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sensing, 7, 2401–2430. https://doi.org/10.3390/rs70302401

    Article  Google Scholar 

  • Roy, P. S., & Giriraj, A. (2008). Land use and land cover analysis in Indian context. Journal of Applied Sciences, 8, 1346–1353. https://doi.org/10.3923/jas.2008.1346.1353

    Article  Google Scholar 

  • Russell, G. C., & Kass, G. (2009). Assessing the accuracy of remotely sensed data: Principles and practice (2nd ed.). CRC Press. https://doi.org/10.1201/9781420055139

    Book  Google Scholar 

  • Seitzinger, S. P., Gaffney, O., Brasseur, G., Broadgate, W., Ciais, P., Claussen, M., Erisman, J. W., Kiefer, T., Lancelot, C., Monks, P. S., Smyth, K., Syvitski, J., & Uematsu, M. (2015). International geosphere-biosphere programme and earth system science: Three decades of co-evolution. Anthropocene, 12, 3–16. https://doi.org/10.1016/j.ancene.2016.01.001

    Article  Google Scholar 

  • Siddiqui, A., Siddiqui, A., Maithani, S., Jha, A. K., Kumar, P., & Srivastav, S. K. (2018). Urban growth dynamics of an Indian metropolitan using CA Markov and logistic regression. The Egyptian Journal of Remote Sensing and Space Sciences, 21, 229–236. https://doi.org/10.1016/j.ejrs.2017.11.006

    Article  Google Scholar 

  • Sohl, T. L., Sayler, K. L., Drummond, M. A., & Loveland, T. R. (2007). The FORE-SCE model: A practical approach for projecting land cover change using scenario based modeling. Journal of Land Use Science, 2, 103–126. https://doi.org/10.1080/17474230701218202

    Article  Google Scholar 

  • Takada, T., & Asako Miyamoto, S. F. H. (2010). Derivation of a yearly transition probability matrix for land-use dynamics and its applications. LandScape Ecology, 25, 561–572. https://doi.org/10.1007/s10980-009-9433-x

    Article  Google Scholar 

  • Veldkamp, A., & Fresco, L. (1996). CLUE: A conceptual model to study the conversion of land use and its effects. Ecological Modelling, 85, 253–270. https://doi.org/10.1016/0304-3800(94)00151-0

    Article  Google Scholar 

  • Veldkamp, A., & Fresco, L. O. (1996). CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modelling, 91, 231–248. https://doi.org/10.1016/0304-3800(95)00158-1

    Article  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Statistics and Computing) (4th ed.). Springer.

    Book  Google Scholar 

  • Verburg, P. H. (2009). Land use change: Science, policy, and management. Environment and Planning B-Planning & Design, 36, 569–570. https://doi.org/10.1068/b32166

    Article  Google Scholar 

  • Verburg, P. H., & Overmars, K. P. (2009). Combining top-down and bottom up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the dyna-CLUE model. Landscape Ecology, 24, 1167. https://doi.org/10.1007/s10980-009-9355-7

    Article  Google Scholar 

  • van Vliet, J. J., Bregt, A. K., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological Modelling, 222, 1367–1375. https://doi.org/10.1016/j.ecolmodel.2011.01.017

    Article  Google Scholar 

  • Waddell, P. (2002). Urbanism: Modeling urban development for land use, transportation, and environmental planning. Journal of the American Planning Association, 68(3), 297–314. https://doi.org/10.1080/01944360208976274

    Article  Google Scholar 

  • Wang, Y., & Li, S. (2011). Simulating multiple class urban land-use/cover changes by rbfn-based ca model. Computers & Geosciences, 37, 111–121. https://doi.org/10.1016/j.cageo.2010.07.006

    Article  Google Scholar 

  • Xing, W., Qian, Y., Guan, X., Yang, T., & Wu, H. (2020). A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Computers & Geosciences, 137, 104430. https://doi.org/10.1016/j.cageo.2020.104430

    Article  Google Scholar 

  • Xu, Q., & Xuan, X. M. (2019). Nonlinear regression without i.i.d assumption. Probability Uncertainty and Quantitative Risk. https://doi.org/10.1186/s41546-019-0042-6

    Article  Google Scholar 

Download references

Acknowledgements

Authors (AKJ, SKS, and SS) thank Director, Indian Institute of Remote Sensing, ISRO, Dehradun, for his constant guidance and support. We thank anonymous reviewers for their critical comments, which significantly helped in improving the manuscript quality. The datasets used for case example are taken from ISRO-Geosphere-Biosphere Program (ISRO-GBP) funded project. The work presented here is part of the Ph.D. research by the first author (AKJ).

Author information

Authors and Affiliations

Authors

Contributions

Ashutosh Kumar Jha contributed to model’s conceptualization, software—design, development and implementation, writing—original draft, review and editing. S. K. Ghosh contributed to guidance and writing—original draft and review. S. K. Srivastava provided data and contributed to software—technical validation, and writing—manuscript and review. Sameer Saran contributed to supervision and writing—original draft and review.

Corresponding author

Correspondence to Ashutosh Kumar Jha.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.K., Ghosh, S.K., Srivastav, S.K. et al. OpenLDM: Open-Source Land-Use and Land-Cover Dynamics Modeling Platform. J Indian Soc Remote Sens 50, 1071–1086 (2022). https://doi.org/10.1007/s12524-022-01516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01516-9

Keywords

Navigation