Skip to main content
Log in

Deriving Phenological Metrics from Landsat-OLI for Sugarcane Crop Type Mapping: A Case Study in North India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The crop detection and classification using satellite imagery can be helpful in crop management. Therefore, it is needed to be explored for effective crop detection and classification. In this study, the phenological metrics derived from dense Landsat Normalized Difference Vegetation Index (NDVI) time-series from January 2017 to June 2018 were used to classify sugarcane crop type. The Savitzkey–Golay method was employed as curve fitting method for smoothening and filtering of the pre-processed NDVI time-series data. Thereafter, the phenological metrics extracted from TIMESAT were used to classify planted and ratoon sugarcane using the decision-tree approach. The overall accuracy was 84.5%, and the kappa coefficient was 0.7. The results showed that the classification method was consistent and robust which has the potential to increase the classification accuracy by the use of better resolution satellite imagery time-series. Moreover, the phenological metrics have the potential to explain the spatial distribution of agricultural pattern, use of crop varieties and management practices that can be useful in better understanding of agricultural practices in the region along with crop diversification and crop yield modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arvor, D., Jonathan, M., Penello, M. S., Dubreuil, V., & Durieux, L. (2011). Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. International Journal of Remote Sensing, 32, 7847–7871. https://doi.org/10.1080/01431161.2010.531783

    Article  Google Scholar 

  • Baghpat Co-Operative Sugar Mills (2019). Sugarcane production statistics. Retrieved 8th June 2019, from http://www.upsugarfed.org/Factory/frm_FactoryStage1.aspx.

  • Bendini, H. do N., Fonseca, L. M. G., Schwieder, M., Körting, T. S., Rufin, P., Sanches, I. D.A., Leitão, P. J., & Hostert, P. (2019). Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. International Journal of Applied Earth Observation and Geoinformation, 82, 101872.

  • Bhatt, D., Kundu, A., Dey, S., Mall, R. K., & Raju, K. N. P. (2021). Water resources management for irrigated agriculture in perspective of geospatial techniques. In P. P. Adhikary, P. K. Shit, P. Santra, G. S. Bhunia, A. K. Tiwari, & B. S. Chaudhary (Eds.), Geostatistics and geospatial technologies for groundwater resources in India (pp. 551–566). Cham: Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-62397-5_28

  • Chaudhari, K. N., Oza, M. P., & Ray, S. S. (2009). Impact of climate change on yields of major food crops in India. In ISPRS archives XXXVIII-8/W3 workshop proceedings: impact of climate change on agriculture (pp. 100–105). Ahmedabad, India.

  • Chen, Y., Feng, L., Mo, J., Mo, W., Ding, M., & Liu, Z. (2020). Identification of sugarcane with NDVI time series based on HJ-1 CCD and MODIS fusion. Journal of the Indian Society of Remote Sensing, 48(2), 249–262. https://doi.org/10.1007/s12524-019-01042-1

    Article  Google Scholar 

  • Conrad, C., Fritsch, S., Zeidler, J., Rücker, G., & Dech, S. (2010). Per-field irrigated crop classification in Arid Central Asia. Remote Sensing, 2, 1035–1056. https://doi.org/10.3390/rs2041035

    Article  Google Scholar 

  • Dubey, S. K., Gavli, A. S., Yadav, S. K., Sehgal, S., & Ray, S. S. (2018). Remote sensing-based yield forecasting for sugarcane (Saccharum officinarum L.) crop in India. Journal of the Indian Society of Remote Sensing, 46(11), 1823–1833. https://doi.org/10.1007/s12524-018-0839-2

    Article  Google Scholar 

  • Eklundh, L., & Jönsson, P. (2011). Timesat 3.1 Software Manual, Lund University, Sweden.

  • Fisher, J. I., & Mustard, J. F. (2007). Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sensing of Environment, 109(3), 261–273. https://doi.org/10.1016/j.rse.2007.01.004

    Article  Google Scholar 

  • Forkuor, G., Conrad, C., Thiel, M., Landmann, T., & Barry, B. (2015). Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Computers and Electronics in Agriculture, 118, 380–389. https://doi.org/10.1016/j.compag.2015.09.020

    Article  Google Scholar 

  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008

    Article  Google Scholar 

  • Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., & Benabdelouahab, T. (2019). The performance of random forest classification based on phenological metrics derived from Sentinel-2 and Landsat 8 to map crop cover in an irrigated Semi-arid Region. Remote Sensing in Earth Systems Sciences, 2(4), 208–224. https://doi.org/10.1007/s41976-019-00023-9

    Article  Google Scholar 

  • Hunsigi, G. (1993). Ratooning. In G. Hunsigi (Ed.), Production of sugarcane: theory and practice (pp. 120–143). Berlin, Heidelberg: Springer, Berlin Heidelberg.

    Chapter  Google Scholar 

  • Hurni, K., Schneider, A., Heinimann, A., Nong, D. H., & Fox, J. (2017). Mapping the expansion of boom crops in mainland Southeast Asia using dense time stacks of Landsat data. Remote Sensing, 9(320), 1–26. https://doi.org/10.3390/rs9040320

    Article  Google Scholar 

  • Kandrika, S., & Roy, P. S. (2008). Land use land cover classification of Orissa using multi-temporal IRS-P6 awifs data: A decision tree approach. International Journal of Applied Earth Observation and Geoinformation, 10, 186–193. https://doi.org/10.1016/j.jag.2007.10.003

    Article  Google Scholar 

  • Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko, O., Kryvobok, O., Shelestov, A., Kolotii, A., Kussul, O., & Lavrenyuk, A. (2013). Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. International Journal of Applied Earth Observations and Geoinformation, 23, 192–203. https://doi.org/10.1016/j.jag.2013.01.002

    Article  Google Scholar 

  • Kontgis, C., Schneider, A., & Ozdogan, M. (2015). Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sensing of Environment, 169, 255–269. https://doi.org/10.1016/j.rse.2015.08.004

    Article  Google Scholar 

  • Körting, T. S., Fonseca, G. L. M., & Câmara, G. (2013). GeoDMA-geographic data mining analyst. Computers and Geosciences, 57, 133–145. https://doi.org/10.1016/j.cageo.2013.02.007

    Article  Google Scholar 

  • Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the U. S. Great Plains agricultural production. Scientific Reports. https://doi.org/10.1038/s41598-018-21848-2

    Article  Google Scholar 

  • KVK Baghpat (2019). District profile. Retrieved 8th June 2019, from http://baghpat.kvk4.in/district-profile.html.

  • Lin, C., Qing-sheng, L., Chong, H., & Gao-huan, L. (2016). Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta, China. Journal of integrative agriculture, 15(10), 2403–2416. https://doi.org/10.1016/S2095-3119(15)61319-3

    Article  Google Scholar 

  • Li, D., Di, K., & Li, D. (2000). Land use classification of remote sensing image with gis data based on spatial data mining techniques. In International Archives of photogrammetry and remote sensing. Vol. XXXIII, Part B3 (pp. 238–245). Amsterdam.

  • Li, P., Feng, Z., & Xiao, C. (2017). Acquisition probability differences in cloud coverage of the available Landsat observations over mainland Southeast Asia from 1986 to 2015 Acquisition probability differences in cloud coverage of the. International Journal of Digital Earth. https://doi.org/10.1080/17538947.2017.1327619

    Article  Google Scholar 

  • Liu, Y., Pei, Z., Wu, Q., Guo, L., Zhao, H., & Chen, X. (2012). Land use/land cover classification based on multi-resolution remote sensing data. In D. Li & Y. Chen (Eds.), Computer and computing technologies in agriculture V (pp. 340–350). Berlin, Heidelberg: Springer, Berlin Heidelberg.

    Chapter  Google Scholar 

  • Lucas, R., Medcalf, K., Brown, A., Bunting, P., Breyer, J., Clewley, D., Keyworth, S., & Blackmore, P. (2011). Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 81–102. https://doi.org/10.1016/j.isprsjprs.2010.09.004

    Article  Google Scholar 

  • Matsuoka, S., & Stolf, R. (2012). Sugarcane tillering and ratooning: key factors for a profitable cropping. In J. F. Goncalves & K. D. Correia (Eds.), Sugarcane: production, cultivation and uses (1st ed., pp. 137–157). Nova Science Publishers, Inc.

  • McNairn, H., Champagne, C., Shang, J., Holmstrom, D., & Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 434–449. https://doi.org/10.1016/j.isprsjprs.2008.07.006

    Article  Google Scholar 

  • Misra, G., Kumar, A., Patel, N. R., & Zurita-Milla, R. (2014). Mapping a specific crop- a temporal approach for sugarcane ratoon. Journal of the Indian Society of Remote Sensing, 42(2), 325–334. https://doi.org/10.1007/s12524-012-0252-1

    Article  Google Scholar 

  • Müller, H., Ru, P., Grif, P., José, A., Siqueira, B., & Hostert, P. (2015). Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sensing of Environment, 156, 490–499. https://doi.org/10.1016/j.rse.2014.10.014

    Article  Google Scholar 

  • Pan, Z., Huang, J., Zhou, Q., Wang, L., Cheng, Y., Zhang, H., Blackburn, G. A., Yang, J., & Liu, J. (2015). Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. International Journal of Applied Earth Observations and Geoinformation, 34, 188–197. https://doi.org/10.1016/j.jag.2014.08.011

    Article  Google Scholar 

  • Pandey, S., Patel, N. R., Danodia, A., & Singh, R. (2019). Discrimination of sugarcane crop and cane yield estimation using Landsat and IRS resourcesat satellite data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42, 229–233.

    Article  Google Scholar 

  • Peña, J. M., Gutiérrez, P. A., Hervás-Martínez, C., Six, J., Plant, R. E., & López-Granados, F. (2014). Object-based image classification of summer crops with machine learning methods. Remote Sensing, 6, 5019–5041. https://doi.org/10.3390/rs6065019

    Article  Google Scholar 

  • Peña-barragán, J. M., Ngugi, M. K., Plant, R. E., & Six, J. (2011). Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115(6), 1301–1316. https://doi.org/10.1016/j.rse.2011.01.009

    Article  Google Scholar 

  • Roy, P. S., & Roy, A. (2010). Land use and land cover change in India: A remote sensing and GIS perspective. Journal of the Indian Institute of Science, 90(4), 489–502.

    Google Scholar 

  • Schmidt, M., Pringle, M., Devadas, R., Denham, R., & Tindall, D. (2016). A framework for large-area mapping of past and present cropping activity using seasonal Landsat images and time series metrics. Remote Sensing, 8(312), 1–25. https://doi.org/10.3390/rs8040312

    Article  Google Scholar 

  • Siachalou, S., Mallinis, G., & Tsakiri-strati, M. (2015). A Hidden Markov Models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sensing, 7, 3633–3650. https://doi.org/10.3390/rs70403633

    Article  Google Scholar 

  • Singh, R., Patel, N. R., & Danodia, A. (2020). Mapping of sugarcane crop types from multi-date IRS-Resourcesat satellite data by various classification methods and field-level GPS survey. Remote Sensing Applications: Society and Environment, 19, 100340. https://doi.org/10.1016/j.rsase.2020.100340

    Article  Google Scholar 

  • Singha, M., Wu, B., & Zhang, M. (2016). An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sensing. https://doi.org/10.3390/rs8060479

    Article  Google Scholar 

  • Singla, S. K., Garg, R. D., & Dubey, O. P. (2018). Sugarcane ratoon discrimination using LANDSAT NDVI temporal data. Spatial Information Research, 26(4), 415–425.

    Article  Google Scholar 

  • Teluguntla, P. G., Thenkabail, P. S., Xiong, J. N., Gumma, M. K., Giri, C., Milesi, C., Ozdogan, M., Congalton, R., Tilton, J., Sankey, T. T., Massey, R., Phalke, A., & Yadav, K. (2015). Global Cropland Area Database (GCAD) derived from Remote Sensing in support of food security in the Twenty-first Century: current achievements and future possibilities. In Land resources: monitoring, modelling, and mapping. Boca Raton, Florida: Taylor & Francis. http://pubs.er.usgs.gov/publication/70117684

  • Thenkabail, P. S. (2010). Global croplands and their importance for water and food security in the twenty-first century: Towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sensing, 2, 2305–2312. https://doi.org/10.3390/rs2092305

    Article  Google Scholar 

  • Thessler, S., Kooistra, L., Teye, F., Huitu, H., & Bregt, A. K. (2011). Geosensors to support crop production: Current applications and user requirements. Sensors, 11, 6656–6684. https://doi.org/10.3390/s110706656

    Article  Google Scholar 

  • Verma, A. K., Garg, P. K., & Hari Prasad, K. S. (2017). Sugarcane crop identification from LISS IV data using ISODATA MLC and indices based decision tree approach. Arabian Journal of Geosciences, 10(16). https://doi.org/10.1007/s12517-016-2815-x

  • Villa, P., Stroppiana, D., Fontanelli, G., Azar, R., & Brivio, P. A. (2015). In-season mapping of crop type with optical and X-band SAR data: A classification tree approach using synoptic seasonal features. Remote Sensing, 7, 12859–12886. https://doi.org/10.3390/rs71012859

    Article  Google Scholar 

  • Waldhoff, G., Curdt, C., Hoffmeister, D., & Bareth, G. (2012). Analysis of multitemporal and multisensor remote sensing data for crop rotation mapping. In ISPRS annals of the photogrammetry, remote sensing and spatial information sciences (Vol. I, pp. 177–182). Melbourne, Australia.

  • Waldner, F., Canto, G. S., & Defourny, P. (2015). Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing, 110, 1–13. https://doi.org/10.1016/j.isprsjprs.2015.09.013

    Article  Google Scholar 

  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming – a review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

    Article  Google Scholar 

  • Zhang, X., Xiong, Q., Di, L., Tang, J., Yang, J., Wu, H., Qin, Y., Su, R., & Zhou, W. (2018). Phenological metrics-based crop classification using HJ-1 CCD images and Landsat 8 imagery. International Journal of Digital Earth, 11(12), 1219–1240. https://doi.org/10.1080/17538947.2017.1387296

    Article  Google Scholar 

  • Zhong, L., Hawkins, T., Biging, G., & Gong, P. (2011). A phenology-based approach to map crop types in the San Joaquin Valley California. International Journal of Remote Sensing, 32(22), 7777–7804. https://doi.org/10.1080/01431161.2010.527397

    Article  Google Scholar 

  • Zhou, Z., Huang, J., Wang, J., Zhang, K., Kuang, Z., Zhong, S., & Song, X. (2015). Object-oriented classification of sugarcane using time-series middle-resolution remote sensing data based on AdaBoost. PLoS ONE, 10(11), 1–16. https://doi.org/10.1371/journal.pone.0142069

    Article  Google Scholar 

Download references

Acknowledgements

This research work carried out as part of pilot project for Department of food & public distribution, Ministry of Consumer Affairs, Food and Public Distribution, Govt. of India. The authors wish to thank Director, IIRS for providing necessary facilities and support to carry out this study. The authors are thankful to anonymous reviewers and Chief Editor of the Journal of the Indian Society of Remote Sensing for their valuable remarks in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Patel, N.R. & Danodia, A. Deriving Phenological Metrics from Landsat-OLI for Sugarcane Crop Type Mapping: A Case Study in North India. J Indian Soc Remote Sens 50, 1021–1030 (2022). https://doi.org/10.1007/s12524-022-01515-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01515-w

Keywords

Navigation