Skip to main content
Log in

Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In this study, a support vector regression (SVR) approach based on a radial basis function was used for estimating sugarcane yield in the Wonji-Shoa sugarcane plantation (Ethiopia) combining Landsat 8 (L8) and sentinel 2A (S2A) data. Vegetation Indices(VIs) involving visible, near-infrared, and shortwave infrared bands were calculated from the L8 and S2A sensor observations, and seasonal cumulative values were computed for the period June to October in the 9th month and June to November in the 10th month of the year for 2016/17 to 2018/19 cropping seasons. Sugarcane yield was predicted using the SVR, Multilayer perceptron neural network (MLPNN), and Multiple linear regression (MLR) methods. Then, a tenfold cross-validation approach was implemented for the performance evaluation. The results showed significant correlations between sugarcane yield and cumulative values of VIs computed during the 10th month in the growing season. The results also revealed that the estimation accuracy of sugarcane was better using the combined L8 and S2A (RMSE = 12.95 t/ha, and MAE = 10.14 t/ha) than using the S2A data alone (RMSE = 14.71 t/ha, and MAE = 12.18 t/ha). Comparing SVR results with MLPNN and MLR disclosed that SVR outperforms the other two models in terms of prediction accuracy. Overall, this study demonstrated the successful application of the SVR in developing a model for Sugarcane yield estimation and it may provide a guideline for improving the estimations of sugarcane in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Rahman, E. M., & Ahmed, F. B. (2008). The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production a review of the literature. International Journal of Remote Sensing, 29(13), 753–3767. https://doi.org/10.1080/01431160701874603

    Article  Google Scholar 

  • Almeida, T. I. R., De Souza Filho, C. R., & Rossetto, R. (2006). ASTER and Landsat ETM+ images applied to sugarcane yield forecast. International Journal of Remote Sensing, 27, 4057–4069. https://doi.org/10.1080/01431160600857451

    Article  Google Scholar 

  • Amorós-lópez, J., Gómez-chova, L., Alonso, L., Guanter, L., Zurita-milla, R., Moreno, J., & Camps-valls, G. (2013). Multi-temporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. International Journal of Applied Earth Observations and Geoinformation, 23, 132–141. https://doi.org/10.1016/j.jag.2012.12.004

    Article  Google Scholar 

  • Anitha, P., & Chakravarthy, T. (2019). Agricultural crop yield prediction using artificial neural network with feed forward algorithm. International Journal of Computer Sciences and Engineering, 6(11), 178–181. https://doi.org/10.26438/ijcse/v6i11.178181

    Article  Google Scholar 

  • Ban, H. Y., Kim, K. S., Park, N. W., & Lee, B. W. (2017). Using MODIS data to predict regional corn yields. Remote Sensing, 9(1), 1–18. https://doi.org/10.3390/rs9010016

    Article  Google Scholar 

  • Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6), 1312–1323. https://doi.org/10.1016/j.rse.2010.01.010

    Article  Google Scholar 

  • Bégué, A., Lebourgeois, V., Bappel, E., Todoroff, P., Pellegrino, A., Baillarin, F., & Siegmund, B. (2010). Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, 31(20), 5391–5407. https://doi.org/10.1080/01431160903349057

    Article  Google Scholar 

  • Chen, H., Wu, W., & Liu, H. B. (2016). Assessing the relative importance of climate variables to rice yield variation using support vector machines. Theoretical and Applied Climatology, 126(1–2), 105–111. https://doi.org/10.1007/s00704-015-1559-y

    Article  Google Scholar 

  • Chen, K. Y., & Wang, C. H. (2007). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, 28(1), 215–226.

    Article  Google Scholar 

  • Congedo, L. (2016). Semi-automatic classification plugin documentation. Release, 4(1), 29.

    Google Scholar 

  • Cuadra, S. V., Costa, M. H., Kucharik, C. J., Da Rocha, H. R., Tatsch, J. D., Inman-Bamber, G., Da Rocha, R. P., Leite, C. C., & Cabral, O. M. R. (2012). A biophysical model of sugarcane growth. Gcb Bioenergy, 4(1), 36–48. https://doi.org/10.1111/j.1757-1707.2011.01105.x

    Article  Google Scholar 

  • Davis, E., Wang, C., & Dow, K. (2019). Comparing S2A and L8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. International Journal of Remote Sensing, 40(16), 6134–6153. https://doi.org/10.1080/01431161.2019.1587205

    Article  Google Scholar 

  • Degefa, S., & Saito, O. (2017). Assessing the impacts of large-scale agro-industrial sugarcane production on biodiversity: A case study of Wonji Shoa Sugar Estate, Ethiopia. Agriculture, 7(12), 99. https://doi.org/10.3390/agriculture7120099

    Article  Google Scholar 

  • Dempewolf, J., Adusei, B., Becker-Reshef, I., Hansen, M., Potapov, P., Khan, A., & Barker, B. (2014). Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sensing, 6(10), 9653–9675. https://doi.org/10.3390/rs6109653

    Article  Google Scholar 

  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.

    Article  Google Scholar 

  • Firehun, Y., Tamado, T., Abera, T., & Yohannes, Z. (2013). Weed Interference in the sugarcane (Saccharum officinarum L.) plantations of Ethiopia. Agriculture, Forestry and Fisheries, 2(6), 239–247.

    Article  Google Scholar 

  • Forkuor, G., Dimobe, K., Serme, I., Ebagnerin, J., & Forkuor, G. (2017). Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. Giscience and Remote Sensing. https://doi.org/10.1080/15481603.2017.1370169

    Article  Google Scholar 

  • Franch, B., Vermote, E. F., Becker-reshef, I., Claverie, M., Huang, J., Zhang, J., Justice, C., & Sobrino, J. A. (2015). Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and ncar growing degree day information. Remote Sensing of Environment, 161, 131–148. https://doi.org/10.1016/j.rse.2015.02.014

    Article  Google Scholar 

  • Franch, B., Vermote, E. F., Skakun, S., Roger, J. C., Becker-Reshef, I., Murphy, E., & Justice, C. (2019). Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. International Journal of Applied Earth Observation and Geoinformation, 76, 112–127. https://doi.org/10.1016/j.jag.2018.11.012

    Article  Google Scholar 

  • Gaffar, A. W. M., & Sitanggang, I. S. (2019). Spatial model for predicting sugarcane crop productivity using support vector regression. In IOP Conference Series: Earth and Environmental Science, 335(1). https://doi.org/10.1088/1755-1315/335/1/012009

  • Girma, M. M., & Awulachew, S. B. (2007). Irrigation Practices in Ethiopia: Characteristics of Selected Irrigation Schemes. Vol. 124. IWMI.

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Article  Google Scholar 

  • Griffiths, P., Nendel, C., & Hostert, P. (2019). Intra-annual reflectance composites from sentinel-2 and landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 220, 135–151. https://doi.org/10.1016/j.rse.2018.10.031

    Article  Google Scholar 

  • Gunnula, W., Kosittrakun, M., Righetti, T. L., Weerathaworn, P., Prabpan, M., Caldwell, J. S., & Sukchan, S. (2012). Evaluating sugarcane growth and maturity using ground-based measurements and remote sensing data. Thai Journal of Agricultural Science, 45(1), 17–28.

    Google Scholar 

  • He, M., Kimball, J. S., Maneta, M. P., Maxwell, B. D., Moreno, A., Beguería, S., & Wu, X. (2018). Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sensing, 10(3), 372. https://doi.org/10.3390/rs10030372

    Article  Google Scholar 

  • Helder, D., Markham, B., Morfitt, R., Storey, J., Barsi, J., Gascon, F., & Lewis, A. (2018). Observations and recommendations for the calibration of landsat 8 OLI and sentinel 2 MSI for improved data interoperability. Remote Sensing, 10(9), 1340. https://doi.org/10.3390/rs10091340

    Article  Google Scholar 

  • Henrich V., Jung A., Götze C., Sandow C., Thürkow D., & Gläßer C. (2009). Development of an online indices database: Motivation, concept and implementation. 6th EARSeL Imaging Spectroscopy.

  • Huang, J., Dai, Q., Wang, H., & Han, D. (2014). Empirical regression model using NDVI, meteorological factors for estimation of wheat yield in Yunnan, China. CUNY Academic Works. http://academicworks.cuny.edu/cc_conf_hic/5.

  • Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., Su, W., Zhang, X., Zhu, D., & Wu, W. (2015). Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204, 106–121. https://doi.org/10.1016/j.agrformet.2015.02.001

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21.

    Article  Google Scholar 

  • Jing, W., Pengyan, Z., Hao, J., & Xiaodan, Z. (2017). Reconstructing satellite-based monthly precipitation over Northeast China using machine learning algorithms. Remote Sensing. https://doi.org/10.3390/rs9080781

    Article  Google Scholar 

  • Johnson, M. D., Hsieh, W. W., Cannon, A. J., Davidson, A., & Bédard, F. (2016). Crop yield forecasting on the Canadian Prairies by remotely sensed VIs and machine learning methods. Agricultural and Forest Meteorology, 218, 74–84. https://doi.org/10.1016/j.agrformet.2015.11.003

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Article  Google Scholar 

  • Justice, C. O., Román, M. O., Csiszar, I., Vermote, E. F., Wolfe, R. E., Hook, S. J., Friedl, M., Wang, Z., Schaaf, C. B., Miura, T., et al. (2013). Land and cryosphere products from Suomi NPP VIIRS: Overview and status. Journal of Geophysical Research: Atmospheres, 118, 9753–9765.

    Google Scholar 

  • Korhonen, L., Packalen, P., & Rautiainen, M. (2017). Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 195, 259–274. https://doi.org/10.1016/j.rse.2017.03.021

    Article  Google Scholar 

  • Kuhn, M. (2008). Caret package. Journal of Statistical Software, 28, 1–26.

    Article  Google Scholar 

  • Lagat, A. K., Waititu, A. G., & Wanjoya, A. K. (2018). Support vector regression and artificial neural network approaches: case of economic growth in east africa community. American Journal of Theoretical and Applied Statistics, 7(2), 67–79. https://doi.org/10.11648/j.ajtas.20180702.13

    Article  Google Scholar 

  • Lai, Y. R., Pringle, M. J., Kopittke, P. M., Menzies, N. W., Orton, T. G., & Dang, Y. P. (2018). An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI. International Journal of Applied Earth Observation and Geoinformation, 7, 99–108. https://doi.org/10.1016/j.jag.2018.07.013

    Article  Google Scholar 

  • Laurin, G. V., Puletti, N., Hawthorne, W., Liesenberg, V., Corona, P., Papale, D., Chen, Q., & Valentini, R. (2016). Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 176, 163–176.

    Article  Google Scholar 

  • Li, J., & Roy, D. P. (2017). A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9(9), 902.

    Article  Google Scholar 

  • Li, R., Li, C., Xu, X., Wang, J., Yang, X., Huang, W., & Pan, Y. (2009). Winter wheat yield estimation based on support vector machine regression and multi-temporal remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 25(7), 114–117.

    Google Scholar 

  • Li, Z., Jin, X., Zhao, C., Wang, J., & Xu, X. (2015). Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. European Journal of Agronomy, 71, 53–62. https://doi.org/10.1016/j.eja.2015.08.006

    Article  Google Scholar 

  • Liu, H. Q., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transaction on Geoscience and Remote Sensing, 33(2), 457–465. https://doi.org/10.1109/36.377946

    Article  Google Scholar 

  • Liu, J., Pattey, E., Miller, J. R., Mcnairn, H., Smith, A., & Hu, B. (2010). Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sensing of Environment, 114(6), 1167–1177. https://doi.org/10.1016/j.rse.2010.01.004

    Article  Google Scholar 

  • Lofton, J., Tubana, B. S., Kanke, Y., Teboh, J., Viator, H., & Dalen, M. (2012). Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors, 12(6), 7529–7547. https://doi.org/10.3390/s120607529

    Article  Google Scholar 

  • Marshall, M., Tu, K., & Brown, J. (2018). Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems. Remote Sensing of Environment, 217, 258–271. https://doi.org/10.1016/j.rse.2018.08.001

    Article  Google Scholar 

  • Miphokasap, P., & Wannasiri, W. (2018). Estimations of nitrogen concentration in sugarcane using hyperspectral imagery. Sustainability, 10(4), 1266. https://doi.org/10.3390/su10041266

    Article  Google Scholar 

  • Morel, J., Todoroff, P., Bégué, A., Bury, A., Martiné, J. F., & Petit, M. (2014). Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on Reunion Island. Remote Sensing, 6(7), 6620–6635. https://doi.org/10.3390/rs6076620

    Article  Google Scholar 

  • Mulianga, B., Bégué, A., Simoes, M., & Todoroff, P. (2013). Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI. Remote Sensing, 5(5), 2184–2199. https://doi.org/10.3390/rs5052184

    Article  Google Scholar 

  • Mutanga, S., Van Schoor, C., Olorunju, P. L., Gonah, T., & Ramoelo, A. (2013). Determining the best optimum time for predicting sugarcane yield using hyper-temporal satellite imagery. Advances in Remote Sensing, 2, 269–275. https://doi.org/10.4236/ars.2013.23029

    Article  Google Scholar 

  • Nanda, M. A., Seminar, K. B., Nandika, D., & Maddu, A. (2018). A comparison study of kernel functions in the support vector machine and its application for termite detection. Information, 9, 5.

    Article  Google Scholar 

  • Ngie, A., & Ahmed, F. (2018). Estimation of Maize grain yield using multispectral satellite data sets (SPOT 5) and the random forest algorithm. South African Journal of Geomatics, 7(1), 11–30.

    Article  Google Scholar 

  • Noi, P. T., Degener, J., & Kappas, M. (2017). Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sensing. https://doi.org/10.3390/rs9050398

    Article  Google Scholar 

  • Nuarsa, I. W., Nishio, F., & Hongo, C. (2011). Relationship between rice spectral and rice yield using MODIS data. Journal of Agricultural Science, 3(2), 80–88. https://doi.org/10.5539/jas.v3n2p80

    Article  Google Scholar 

  • Oguntunde, P. G., Lischeid, G., & Dietrich, O. (2018). Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis. International Journal of Biometeorology, 62(3), 459–469.

    Article  Google Scholar 

  • Pagani, V., Stella, T., Guarneri, T., Finotto, G., van den Berg, M., Marin, F. R., Acutis, M., & Confalonieri, R. (2017). Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil. Agricultural Systems, 154, 45–52. https://doi.org/10.1016/j.agsy.2017.03.002

    Article  Google Scholar 

  • Panda, S. S., Ames, D. P., & Panigrahi, S. (2010). Application of VIs for agricultural crop yield prediction using neural network techniques. Remote Sensing, 2(3), 673–696. https://doi.org/10.3390/rs2030673

    Article  Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.

    Article  Google Scholar 

  • R. Core Team. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

    Google Scholar 

  • Rahman, M. M., & Robson, A. J. (2016). A novel approach for sugarcane yield prediction using Landsat time series imagery: A case study on Bundaberg region. Advances in Remote Sensing, 5, 93–102. https://doi.org/10.4236/ars.2016.52008

    Article  Google Scholar 

  • Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., & Khoshnevisan, B. (2014). Potential of radial basis function based support vector regression for global solar radiation prediction. Renewable and Sustainable Energy Reviews, 39, 1005–1011. https://doi.org/10.1016/j.rser.2014.07.108

    Article  Google Scholar 

  • Reynolds, C. A., Yitayew, M., Slack, D. C., Hutchinson, C. F., Huete, A., & Petersen, M. S. (2000). Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. International Journal of Remote Sensing, 21(18), 3487–3508.

    Article  Google Scholar 

  • Robson, A., Abbott, C., Lamb, D., and Bramley, R. (2012). Developing sugarcane yield prediction algorithms from satellite imagery. In Proceedings of the Australian Society of Sugar Cane Technologists, 34(11).

  • Rouse Jr, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.

  • Roy, D. P., Huang, H., Boschetti, L., Giglio, L., Yan, L., & Zhang, H. H. (2019). Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi- temporal change detection approach. Remote Sensing of Environment, 231, 111254. https://doi.org/10.1016/j.rse.2019.111254

    Article  Google Scholar 

  • Saeed, U., Dempewolf, J., Becker-Reshef, I., Khan, A., & Wajid, S. A. (2017). Forecasting wheat yield from weather data and MODIS NDVI using random forests for Punjab province, Pakistan. International Journal of Remote Sensing, 38(17), 4831–4854. https://doi.org/10.1080/01431161.2017.1323282

    Article  Google Scholar 

  • Sibley, A. M., Grassini, P., Thomas, N. E., & Cassman, K. G. (2014). Testing remote sensing approaches for assessing yield variability among maize fields. Agronomy Journal, 106(1), 24–32. https://doi.org/10.2134/agronj2013.0314

    Article  Google Scholar 

  • Skakun, S., Vermote, E., Franch, B., Roger, J. C., Kussul, N., Ju, J., & Masek, J. (2019). Winter wheat yield assessment from landsat 8 and sentinel-2 data: Incorporating surface reflectance, through phenological fitting, into regression yield models. Remote Sensing. https://doi.org/10.3390/rs11151768

    Article  Google Scholar 

  • Skakun, S., Vermote, E., Roger, J. C., & Franch, B. (2017). Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale. AIMS Geosciences, 3(2), 163–186. https://doi.org/10.3934/geosci.2017.2.163

    Article  Google Scholar 

  • Storey, J., Roy, D. P., Masek, J., Gascon, F., Dwyer, J., & Choate, M. (2017). A note on the temporary misregistration of Landsat-8 operational land imager (OLI) and sentinel-2 multi spectral instrument (MSI) imagery. Remote Sensing of Environment, 186(2016), 121–122. https://doi.org/10.1016/j.rse.2016.08.025

    Article  Google Scholar 

  • Svotwa, E., Masuka, A. J., Maasdorp, B., & Murwira, A. (2014). Estimating tobacco crop area and yield in Zimbabwe using operational remote sensing and statistical techniques. International Journal of Agricultural Research and Review, 2(5), 84–91.

    Google Scholar 

  • Svotwa, E., Masuka, A. J., Maasdorp, B., Murwira, A., & Shamudzarira, M. (2013). Remote sensing applications in tobacco yield estimation and the recommended research in Zimbabwe. International Scholarly Research Network (ISRN) Agronomy. https://doi.org/10.1155/2013/941873

    Article  Google Scholar 

  • Ueno, M., Kawamitsu, Y., Sun, L., Taira, E., & Maeda, K. (2005). Combined applications of NIR, RS, and GIS for sustainable sugarcane production. Sugarcane International, 23.

  • Vapnik, V. N. (1998). Statistical Learning Theory. Wiley.

    Google Scholar 

  • Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-valls, G., & Moreno, J. (2012). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment, 118, 127–139. https://doi.org/10.1016/j.rse.2011.11.002

    Article  Google Scholar 

  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 17p. https://doi.org/10.1155/2017/1353691

    Article  Google Scholar 

  • Yan, L., Roy, D. P., Zhang, H., Li, J., & Huang, H. (2016). An automated approach for sub-pixel registration of landsat-8 operational land imager (OLI) and sentinel-2 multi spectral instrument (MSI) imagery. Remote Sensing, 8(6), 520.

    Article  Google Scholar 

  • Zhang, G., & Huihua, G. (2013). Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins. Computational Biology and Chemistry, 46, 16–22.

    Article  Google Scholar 

  • Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., & Roger, J. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215, 482–494. https://doi.org/10.1016/j.rse.2018.04.031

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted with funding provided by the Ethiopian Space Science and Technology Institute (ESSTI). The field-level sugarcane yield data were provided by the Wonji Sugarcane Research and Development Centre. The Copernicus Program of the European Space Agency (ESA) and the United States Geological Survey (USGS) Landsat Program are thanked for their open-source Sentinel-2A MSI and L8 OLI datasets, respectively. Our gratitude is also extended to the R Development Team for the open-source packages for the statistical analysis.

Funding

This study was funded by the Ethiopian Space Science and Technology Institute (ESSTI).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Gebeyehu Abebe. The first draft of the manuscript was written by Gebeyehu Abebe and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gebeyehu Abebe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abebe, G., Tadesse, T. & Gessesse, B. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. J Indian Soc Remote Sens 50, 143–157 (2022). https://doi.org/10.1007/s12524-021-01466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01466-8

Keyword

Navigation