Skip to main content

Advertisement

Log in

Shoreline Changes Analysis and Forecast Using Digital Shoreline Assessment System 5.0: Evidences from Parts of East Coast of India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Shoreline change analysis is examined for around 140 km coastal belt between Paradip port in the southern and Dhamra port in the northeastern parts of Odisha using DSAS 5.0. The study area is reported of being through the severe landward movement of the sea. To examine this, multispectral satellite images obtained from 1973 to 2020 are taken into account. The vector data generated are fed into the DSAS application to figure out the rate of changes in the position of the shoreline. DSAS suggested statistical methods, i.e. Shoreline Change Envelope, Net Shoreline Movement, End Point Rate, Linear Regression Rate, and Weighted Linear Regression, are used for calculating the rate of change in shoreline positions. Also with the help of “beta forecasting”, the future shoreline positions for the period between the years 2030 and 2040 are forecasted. The mean change rate, average seaward gain, and average landward gain are found to be 1.236, 10.10, and 12.42 m/year, respectively. The highest seaward movement is measured as 1843.06 m and the highest landward movement is at 1547.5 m in the study area. The shoreline position is shifted up in an average of 286.03 m in 2/3rd (67.3%) cases of transects, where the maximum shift is 1843.06 m and the minimum being 11.58 m. The beta forecasting result is validated by collating satellite image Landsat 8 (acquired on 25.12.2020) and forecasted shoreline 2020. The results indicated that the shoreline has shifted up to 2 km from 1971 to 2019 atleast 2/3rd positions. This is such a serious concern and alerts with a strong warning of rapid shoreline changes. It further emphasizes the need for conservation and management of this coastal belt to protect coastal biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Please refer to 4.2 Shoreline Change Calculations for details on SCE.

References

  • Aiello, A., Canora, F., Pasquariello, G., & Spilotro, G. (2013). Shoreline variations and coastal dynamics: A space–time data analysis of the Jonian littoral, Italy. Estuarine, Coastal and Shelf Science, 129, 124–135.

    Article  Google Scholar 

  • Balamurugan, G., & Aravind, M. S. (2015). Land use land cover changes in pre-and post-earthquake affected area using Geoinformatics-Western Coast of Gujarat, India. Disaster Advances, 8(4), 1–14.

    Google Scholar 

  • Beura, D. (2016). Coastal erosion in Odisha: Causes and consequences with special reference to Puri Beach Erosion.

  • Bollen, M., Trouw, K., Lerouge, F., Gruwez, V., Bolle, A., Hoffman, B., Leysen, G., De Kesel, Y., & Mercelis, P. (2011). Design of a coastal protection scheme for Ada at the Volta-River mouth (Ghana). Coastal Engineering Proceedings, 1(32), 36.

    Article  Google Scholar 

  • Brunel, C., & Sabatier, F. (2009). Potential influence of sea-level rise in controlling shoreline position on the French Mediterranean Coast. Geomorphology, 107(1–2), 47–57.

    Article  Google Scholar 

  • Chand, P., & Acharya, P. (2010). Shoreline change and sea level rise along coast of Bhitarkanika wildlife sanctuary, Orissa: An analytical approach of remote sensing and statistical techniques. International Journal of Geomatics and Geosciences, 1(3), 436–455.

    Google Scholar 

  • Crowell, M., Douglas, B. C., & Leatherman, S. P. (1997). On forecasting future US shoreline positions: a test of algorithms. Journal of Coastal Research, pp 1245–1255.

  • Douglas, B. C., & Crowell, M. (2000). Long-term shoreline position prediction and error propagation. Journal of Coastal Research, pp 145–152.

  • Edwards, R. (2005). Sea levels: Abrupt events and mechanisms of change. Progress in Physical Geography, 29(4), 599–608.

    Article  Google Scholar 

  • El Kafrawy, S. B., Basiouny, M. E., Ghanem, E. A., & Taha, A. S. (2017). Performance evaluation of shoreline extraction methods based on remote sensing data. Journal of Geography, Environment and Earth Science International, 11(4), 1–18.

    Article  Google Scholar 

  • Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., & Meybeck, M. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change, 50(1–2), 63–82.

    Article  Google Scholar 

  • Feagin, R. A., Sherman, D. J., & Grant, W. E. (2005). Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Frontiers in Ecology and the Environment, 3(7), 359–364.

    Article  Google Scholar 

  • Galgano, F. A., Leatherman, S. P., & Douglas, B. C. (2004). Inlets dominate US east coast shoreline change. Journal of Coastal Research.

  • Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., & Rooney, J. J. (2007). The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. Journal of Coastal Research, pp 87–105.

  • Gornitz, V., Couch, S., & Hartig, E. K. (2001). Impacts of sea level rise in the New York City metropolitan area. Global and Planetary Change, 32(1), 61–88.

    Article  Google Scholar 

  • Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M. L., Zaccagnino, A., et al. (2006). A multisource approach for coastline mapping and identification of shoreline changes. Annals of Geophysics, 49(1).

  • Gupta, H., Kao, S. J., & Dai, M. (2012). The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. Journal of Hydrology, 464, 447–458.

    Article  Google Scholar 

  • Hapke, C. J., Reid, D., Richmond, B. M., Ruggiero, P., & List, J. (2006). National assessment of shoreline change Part 3: Historical shoreline change and associated coastal land loss along sandy shorelines of the California Coast. US Geological Survey Open File Report, 1219, 79.

    Google Scholar 

  • Hapke, C. J., Himmelstoss, E. A., Kratzmann, M. G., List, J. H., & Thieler, E. R. (2010). National assessment of shoreline change: Historical shoreline change along the New England and Mid-Atlantic coasts. US Geological Survey.

  • Hazra, S., Ghosh, T., DasGupta, R., & Sen, G. (2002). Sea level and associated changes in the Sundarbans. Science and Culture, 68(9/12), 309–321.

    Google Scholar 

  • Hazra, S., Das, S., Ghosh, A., Raju, P. V., & Patel, A. (2020). The Mahanadi Delta: A Rapidly Developing Delta in India. In Deltas in the Anthropocene (pp. 53–77). Palgrave Macmillan, Cham.

  • Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide (No. 2018–1179). US Geological Survey.

  • Honeycutt, M. G., & Krantz, D. E. (2003). Influence of the geologic framework on spatial variability in long-term shoreline change, Cape Henlopen to Rehoboth Beach, Delaware. Journal of Coastal Research, pp 147–167.

  • Church, J.A., Woodworth, P.L., Aarup, T., & Wilson, W.S. (eds.) (2010). Sea-Level Rise and Variability. Chichester, United Kingdom: Wiley-Blackwell, 428p.

  • Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2014). Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology. Environmental Earth Sciences, 71(10), 4523–4542.

    Article  Google Scholar 

  • Kaviraj, M. S., & Kumar, K. M. (2016). Assessment of Shoreline Changes Due to Anthropogenic Activities using Remote Sensing & GIS. Proceedings of the GEOSPATIAL—2016, 4(20).

  • Leatherman, S. P., Zhang, K., & Douglas, B. C. (2000a). Sea level rise shown to drive coastal erosion. Eos, Transactions American Geophysical Union, 81(6), 55–57.

    Article  Google Scholar 

  • Leatherman, S. P., Zhang, K., & Douglas, B. C. (2000b). Reply [to “Comment on ‘Sea level rise shown to drive coastal erosion’”]. Eos, Transactions American Geophysical Union, 81(38), 437–441.

    Article  Google Scholar 

  • Long, J. W., & Plant, N. G. (2012). Extended Kalman Filter framework for forecasting shoreline evolution. Geophysical Research Letters, 39(13).

  • Ly, C. K. (1980). The role of the Akosombo Dam on the Volta River in causing coastal erosion in central and eastern Ghana (West Africa). Marine Geology, 37(3–4), 323–332.

    Article  Google Scholar 

  • Mazian, H. I., Aziz, I., & Abdullah, A. (1989). Preliminary evaluation of photogrammetric-remote sensing approach in monitoring shoreline erosion. In The 10th Asian Conference on Remote Sensing Proceeding.

  • Mishra, M., Chand, P., Pattnaik, N., Kattel, D. B., Panda, G. K., Mohanti, M., Baruah, U. D., Chandniha, S. K., Achary, S., & Mohanty, T. (2019). Response of long-to short-term changes of the Puri coastline of Odisha (India) to natural and anthropogenic factors: A remote sensing and statistical assessment. Environmental Earth Sciences, 78(11), 338.

    Article  Google Scholar 

  • Moody, D. W. (1964). Coastal morphology and processes in relation to the development of submarine sand ridges off Bethany Beach, Delaware (Doctoral dissertation, Johns Hopkins University).

  • Morton, R. A., Gibeaut, J. C., & Paine, J. G. (1995). Meso-scale transfer of sand during and after storms: Implications for prediction of shoreline movement. Marine Geology, 126(1–4), 161–179.

    Article  Google Scholar 

  • Morton, R. A., Miller, T. L., & Moore, L. J. (2004). National assessment of shoreline change: Part 1 Historical shoreline changes and associated coastal land loss along the US Gulf of Mexico. US Geological Survey.

  • Moser, S. C., Jeffress Williams, S., & Boesch, D. F. (2012). Wicked challenges at land’s end: Managing coastal vulnerability under climate change. Annual Review of Environment and Resources, 37, 51–78.

    Article  Google Scholar 

  • Mukhopadhyay, A., Ghosh, P., Chanda, A., Ghosh, A., Ghosh, S., Das, S., Tuhin, G., & Hazra, S. (2018). Threats to coastal communities of Mahanadi delta due to imminent consequences of erosion–Present and near future. Science of the Total Environment, 637, 717–729.

    Article  Google Scholar 

  • Murty, T. S., & Flather, R. A. (1994). Impact of storm surges in the Bay of Bengal. Journal of Coastal Research, pp 149–161.

  • Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., & Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81–95.

    Article  Google Scholar 

  • Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517–1520.

    Article  Google Scholar 

  • Nicholls, R. J., Marinova, N., Lowe, J. A., Brown, S., Vellinga, P., De Gusmao, D., Hinkel, J., & Tol, R. S. (2011). Sea-level rise and its possible impacts given a ‘beyond 4 C world’in the twenty-first century. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 369(1934), 161–181.

    Article  Google Scholar 

  • Nicholls, R.J. (2010). Impacts and responses to sea-level rise. In Church, J.A.; Woodworth, P.L.; Aarup, T., and Wilson, W.S. (eds.), Sea-level Rise and Variability. Chichester, United Kingdom: Wiley-Blackwell, pp. 17–43.

  • Ramesh, R., Purvaja, R., &Senthil, V. A. (2011). National assessment of shoreline change: Odisha coast. NCSCM/MoEF report, 57.

  • Riggs, S. R., Cleary, W. J., & Snyder, S. W. (1995). Influence of inherited geologic framework on barrier shoreface morphology and dynamics. Marine Geology, 126(1–4), 213–234.

    Article  Google Scholar 

  • Romine, B. M., Fletcher, C. H., Barbee, M. M., Anderson, T. R., & Frazer, L. N. (2013). Are beach erosion rates and sea-level rise related in Hawaii?.Global and Planetary Change, 108, 149–157.

  • Sheik, M. (2011). A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-spatial information Science, 14(4), 282–293.

    Article  Google Scholar 

  • Syvitski, J. P. (2008). Deltas at risk. Sustainability Science, 3(1), 23–32.

    Article  Google Scholar 

  • Syvitski, J. P., Harvey, N., Wolanski, E., Burnett, W. C., Perillo, G. M., Gornitz, V., & Yim, W. W. S. (2005). Dynamics of the coastal zone. In Coastal Fluxes in the anthropocene (pp. 39–94). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Terry, J. P., & Raj, R. (1999). Island environment and landscape responses to 1997 tropical cyclones in Fiji.

  • Thieler, E. R., & Danforth, W. W. (1994). Historical shoreline mapping (II): application of the digital shoreline mapping and analysis systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico. Journal of Coastal Research, 600–620.

  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change (No. 2008–1278). US Geological Survey.

  • Thompson, M., Brenner, J., & Gilmer, B. (2014). Informing conservation planning using future sea-level rise and storm surge modeling impact scenarios in the Northern Gulf of Mexico. Ocean & Coastal Management, 100, 51–62.

    Article  Google Scholar 

  • Webb, A. P., & Kench, P. S. (2010). The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the Central Pacific. Global and Planetary Change, 72(3), 234–246.

    Article  Google Scholar 

  • Weiss, J. L., Overpeck, J. T., & Strauss, B. (2011). Implications of recent sea level rise science for low-elevation areas in coastal cities of the conterminous USA. Climatic Change, 105(3–4), 635–645.

    Article  Google Scholar 

  • Williams, S. J. (2009). Past, present, and future sea-level rise and effects on coasts under changing global climate, Chapter C. Sand Resources, Regional Geology, and Coastal Processes of the Chandeleur Island Coastal System, US Geological Survey Scientific Investigation Report, 5252, 37–44.

  • Williams, S. J. (2013). Sea-level rise implications for coastal regions. Journal of Coastal Research, 63(sp1), 184–196.

    Article  Google Scholar 

  • Zeinali, S., Talebbeydokhti, N., & Dehghani, M. (2020). Spatiotemporal shoreline change in Boushehr Province coasts, Iran. Journal of Oceanology and Limnology, 1–15.

  • Zhang, K., Douglas, B. C., & Leatherman, S. P. (2004). Global warming and coastal erosion. Climatic Change, 64(1–2), 41.

    Article  Google Scholar 

  • Zhang, K., Douglas, B., & Leatherman, S. (2002). Do storms cause long-term beach erosion along the US East Barrier Coast?.The journal of Geology, 110(4), 493–502.

Download references

Funding

This Research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balamurugan Guru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, G., Guru, B. & Sangma, F. Shoreline Changes Analysis and Forecast Using Digital Shoreline Assessment System 5.0: Evidences from Parts of East Coast of India. J Indian Soc Remote Sens 49, 2815–2830 (2021). https://doi.org/10.1007/s12524-021-01424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01424-4

Keywords

Navigation