Skip to main content

Advertisement

Log in

Impact of Climate Change on the Glaciers of Spiti River Basin, Himachal Pradesh, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

People living in Spiti river basin, located in the north-eastern part of Himachal Pradesh, depend heavily on seasonal snow and glacier melt for their water requirements. The basin is more susceptible to climate change, as it indicates a higher rise in temperature than other parts of Himachal Pradesh. This work assesses glaciers' current health and projects future changes under RCP 4.5 and RCP 8.5 (Representative Concentration Pathway) climate change scenarios. The total glaciated area in Spiti basin is 550.5 sq. km containing 21.42 ± 3.86 Giga-tonnes (Gt) of stored water. The basin has observed a mass loss of 8.89 Gt from 1985 to 2013. The future projection for the worst-case scenario (RCP8.5) suggests, 4.1 °C rise in temperature and 3.4% increase in winter precipitation by 2070 (average, 2065–2075), from 1985 to 2005 baseline period. Under this climate change scenario, the Spiti basin is likely to experience 84.8% loss in glacier stored water, 71.8% reduction in glaciated area from observed values of 2014. Besides, 76% of total glaciers may disappear by 2070 under RCP 8.5 scenario, which will alter the village communities' water security status, thereby highlighting the urgency to develop an adaptation strategy for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Sharing of data would be done upon reasonable request.

References

  • Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., & Matonse, A. H. (2011). Examination of change factor methodologies for climate change impact assessment. Water Resources Research. https://doi.org/10.1029/2010WR009104.

    Article  Google Scholar 

  • Banerjee, A. (2017). Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate. Cryosphere, 11(1), 133–138. https://doi.org/10.5194/tc-11-133-2017.

    Article  Google Scholar 

  • Basnett, S., Kulkarni, A. V., & Bolch, T. (2013). The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya India. Journal of Glaciology, 59(218), 1035–1046. https://doi.org/10.3189/2013JoG12J184.

    Article  Google Scholar 

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327–338. https://doi.org/10.1016/j.rse.2006.11.017.

    Article  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828.

    Article  Google Scholar 

  • Bolch, T., Pieczonka, T., & Benn, D. I. (2011). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5, 349–358. https://doi.org/10.5194/tc-5-349-2011.

    Article  Google Scholar 

  • Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10, 668–673. https://doi.org/10.1038/ngeo2999.

    Article  Google Scholar 

  • Census of India, (2011) - District Census Handbook - Himachal Pradesh - Lahaul and Spiti

  • Chaturvedi, Rajiv K., Kulkarni, A., Karyakarte, Y., Joshi, J., & Bala, G. (2014). Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 123, 315–328. https://doi.org/10.1007/s10584-013-1052-5.

    Article  Google Scholar 

  • Chaturvedi, Rajiv Kumar, Joshi, J., Jayaraman, M., Bala, G., & Ravindranath, N. H. (2012). Multi-model climate change projections for India under representative concentration pathways. Current Science, 103(7), 791–802.

    Google Scholar 

  • Cuffey, M. K., & Paterson, W. (2010). The physics of glacier. (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Dobhal, D. P., Mehta, M., & Srivastava, D. (2013). Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya India. Journal of Glaciology, 59(217), 961–971. https://doi.org/10.3189/2013JoG12J180.

    Article  Google Scholar 

  • Farinotti, D., Huss, M., Bauder, A., Funk, M., & Truffer, M. (2009). A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology, 55(191), 422–430. https://doi.org/10.3189/002214309788816759.

    Article  Google Scholar 

  • Gantayat, P., Kulkarni, A. V., & Srinivasan, J. (2014). Estimation of ice thickness using surface velocities and slope: Case study at Gangotri Glacier India. Journal of Glaciology, 60(220), 277–282. https://doi.org/10.3189/2014JoG13J078.

    Article  Google Scholar 

  • Gardelle, J., Berthier, E., Arnaud, Y., & Kääb, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere, 7(4), 1263–1286. https://doi.org/10.5194/tc-7-1263-2013.

    Article  Google Scholar 

  • Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., Van Den Broeke, M. R., & Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857. https://doi.org/10.1126/science.1234532.

    Article  Google Scholar 

  • Garg, P. K., Shukla, A., & Jasrotia, A. S. (2017). Influence of topography on glacier changes in the central Himalaya, India. Global and Planetary Change, 155, 196–212. https://doi.org/10.1016/j.gloplacha.2017.07.007.

    Article  Google Scholar 

  • Haeberli, W., & Hoelzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Annals of Glaciology, 21, 206–212.

    Article  Google Scholar 

  • Hutchinson, M.F., (2011) ANUDEM version 5.3. User’s guide, Australia National University Fenner School of Environment and Society, Canberra, Australia.

  • IPCC, (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

  • Jiawen, R., Zhefan, J., Jianchen, P., & Xiang, Q. (2006). Glacier variations and climate change in the central Himalaya over the past few decades. Annals of Glaciology, 43, 218–222. https://doi.org/10.3189/172756406781812230.

    Article  Google Scholar 

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495–498. https://doi.org/10.1038/nature11324.

    Article  Google Scholar 

  • Kamb, B., & Echelmeyer, K. A. (1986). Stress-gradient coupling in glacier flow: I. longitudinal averaging of the influence of ice thickness and surface slope. Journal of Glaciology, 32(111), 267–284. https://doi.org/10.3189/S0022143000015604.

    Article  Google Scholar 

  • Kulkarni, A. V., & Pratibha, S (2018) Assessment of Glacier Fluctuations in the Himalaya. In Science and Geopolitics of the White World, 183–195. Cham;Springer:

  • Kulkarni A V., Goswami A., Ramsanakaran R., Singh G ., Dashora A., Pradeep S., Remya SN., Nagashri K., Arya A R., Godha A (2018) HIGTHIM User Manual Divecha Centre for Climate Change

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing, 32(3), 601–615. https://doi.org/10.1080/01431161.2010.517802.

    Article  Google Scholar 

  • Kumar, P., Husain, A., Singh, R. B., & Kumar, M. (2018). Impact of land cover change on land surface temperature: A case study of Spiti Valley. Journal of Mountain Science, 15(8), 1658–1670. https://doi.org/10.1007/s11629-018-4902-9.

    Article  Google Scholar 

  • Linsbauer, A., Paul, F., & Haeberli, W. (2012). Modeling glacier thickness distribution and bed topography over entire mountain ranges with glabtop: Application of a fast and robust approach. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2011JF002313.

    Article  Google Scholar 

  • Maanya, U. S., Kulkarni, A. V., Tiwari, A., Bhar, E. D., & Srinivasan, J. (2016). Identification of potential glacial lake sites and mapping maximum extent of existing glacier lakes in Drang Drung and Samudra Tapu glaciers Indian Himalaya. Current Science, 111(3), 553–560.

    Article  Google Scholar 

  • Marzeion, B., Jarosch, A. H., & Hofer, M. (2012). Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6(6), 1295–1322. https://doi.org/10.5194/tc-6-1295-2012.

    Article  Google Scholar 

  • Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S., & Bolch, T. (2018). Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya. Climatic Change, 148, 219–233. https://doi.org/10.1007/s10584-018-2185-3.

    Article  Google Scholar 

  • Murali, R., Redpath, S., & Mishra, C. (2017). The value of ecosystem services in the high altitude Spiti Valley. Indian Trans-Himalaya Ecosystem Services, 28(115), 123. https://doi.org/10.1016/j.ecoser.2017.10.018.

    Article  Google Scholar 

  • Negi, H. S., Kanda, N., Shekhar, M. S., & Ganju, A. (2018). Recent wintertime climatic variability over the North West Himalayan cryosphere. Current Science, 114(4), 760–770.

    Article  Google Scholar 

  • Pfeffer, W. T. (2014). The Randolph glacier inventory: A globally complete inventory of glaciers. Journal of Glaciol., 60, 537–552.

    Article  Google Scholar 

  • Prasad, V., Kulkarni, A. V., Pradeep, S., Pratibha, S., Tawde, S. A., Shirsat, T., Arya, A. R., Orr, A., & Bannister, D. (2019). Large losses in glacier area and water availability by the end of twenty-first century under high emission scenario, Satluj basin. Himalaya. Current Science, 116(10), 1721–1730.

    Article  Google Scholar 

  • Pratibha, S., & Kulkarni, A. V. (2018). Decadal change in supraglacial debris cover in Baspa basin Western Himalaya. Current Science, 114(4), 792–799.

    Article  Google Scholar 

  • Ragettli, S., Bolch, T., & Pellicciotti, F. (2016). Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal Nepal. Cryosphere, 10(5), 2075–2097. https://doi.org/10.5194/tc-10-2075-2016.

    Article  Google Scholar 

  • Remya, S. N., Kulkarni, A. V., Pradeep, S., & Shrestha, D. (2019). Volume estimation of existing and potential glacier lakes. Sikkim Himalaya India. Current Science, 116(4), 620–627.

    Google Scholar 

  • RGI Consortium (2015). Randolph glacier inventory – a dataset of global glacier outlines: Version 5.0: Technical Report, global land ice measurements from space, colorado, USA. Digital Media, DOI: /https://doi.org/10.7265/N5-RGI-50. (n.d.).

  • Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7), 887–935. https://doi.org/10.1016/j.techfore.2006.05.026.

    Article  Google Scholar 

  • Rowan, A. V., Egholm, D. L., Quincey, D. J., & Glasser, N. F. (2015). Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth and Planetary Science Letters, 430, 427–438.

    Article  Google Scholar 

  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4, 156–159. https://doi.org/10.1038/ngeo1068.

    Article  Google Scholar 

  • Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11, 65–77. https://doi.org/10.1007/s10113-010-0174-9.

    Article  Google Scholar 

  • Singh, P., & Kumar, N. (1997). Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. Journal of Hydrology, 193(1–4), 316–350. https://doi.org/10.1016/S0022-1694(96)03142-3.

    Article  Google Scholar 

  • Singh, P., & Kumar, N. (1997). Effect of orography on precipitation in the western Himalayan region. Journal of Hydrology, 199(1–2), 183–206. https://doi.org/10.1016/S0022-1694(96)03222-2.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2016). Estimation of glacier mass balance on a basin scale: An approach based on satellite-derived snowlines and a temperature index model. Current Science, 111(12), 1977–1989.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Annals of Glaciology, 58(75), 99–109. https://doi.org/10.1017/aog.2017.18.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2019). An assessment of climate change impacts on glacier mass balance and geometry in the Chandra Basin, Western Himalaya for the 21st century. Environmental Research Communications. https://doi.org/10.1088/2515-7620/ab1d6d.

    Article  Google Scholar 

  • Taylor, J. (1997). An Introduction to Error Analysis: The Study of Uncertainities in Physical Measurements (2nd ed.). University Science Books.

  • Venkatesh, T. N., Kulkarni, A. V., & Srinivasan, J. (2012). Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers. The Cryosphere, 6, 301–311. https://doi.org/10.5194/tc-6-301-2012.

    Article  Google Scholar 

  • Vijay, S., & Braun, M. (2016). Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing. https://doi.org/10.3390/rs8121038.

    Article  Google Scholar 

  • Vincent, C., Ramanathan, A., Wagnon, P., Dobhal, D. P., Linda, A., Berthier, E., Sharma, P., Arnaud, Y., Azam, M. F., Jose, P. G., & Gardelle, J. (2013). Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. The Cryosphere, 7(2), 569–582. https://doi.org/10.5194/tc-7-569-2013.

    Article  Google Scholar 

  • Vincent, Christian, Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., Brun, F., Berthier, E., & Sherpa, S. F. (2016). Reduced melt on debris-covered glaciers: Investigations from Changri Nup Glacier. Nepal. Cryosphere, 10(4), 1845–1858. https://doi.org/10.5194/tc-10-1845-2016.

    Article  Google Scholar 

  • Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., & Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183–1186. https://doi.org/10.1126/science.1168475.

    Article  Google Scholar 

  • Yashwant, S. (2018). Photo feature: Climate change altering farming in Spiti - India Climate Dialogue. https://indiaclimatedialogue.net/2018/09/21/climate-change-is-altering-farming-landscape-in-spiti/

Download references

Acknowledgements

We thank Space Applications Centre (ISRO) and Divecha Centre for Climate Change (IISc) for providing necessary funds and support to carry out this research. Bhakra Beas Management Board (BBMB) provided daily temperature and precipitation data of Kaza meteorological station and Climate Change Research Centre, Indian Institute of Tropical Meteorology provided us the climate model data.

Funding

We thank Indian Space Research Organization (ISRO) – Space Applications Centre, Ahmedabad for providing necessary funds to carry out this research work under “Cryosphere Science and Applications” programme.

Author information

Authors and Affiliations

Authors

Contributions

AK was involved in conceptualization, methodology, formal analysis, writing- original Draft, writing- review & editing, VP contributed to methodology, formal analysis, visualization, TS was involved in data curation, RC contributed to conceptualization, I.M B was involved in supervision.

Corresponding author

Correspondence to Ashutosh Kulkarni.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, A., Prasad, V., Shirsat, T. et al. Impact of Climate Change on the Glaciers of Spiti River Basin, Himachal Pradesh, India. J Indian Soc Remote Sens 49, 1951–1963 (2021). https://doi.org/10.1007/s12524-021-01368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01368-9

Keywords

Navigation