Skip to main content

Advertisement

Log in

Uncertainty Assessment in Soil Erosion Modelling Using RUSLE, Multisource and Multiresolution DEMs

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil erosion is a key concern for the environment and natural resources since it leads to a decline in-field productivity and soil quality, resulting in land degradation. In this study, assessment of uncertainty in soil erosion modelling of the Karso watershed, India, was carried out by employing the revised universal soil loss equation (RUSLE) and geospatial technologies to evaluate the effect of multi-source digital elevation models (DEMs) [Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Cartosat and Shuttle Radar Topography Mission (SRTM)] with resampled multi-resolution grids. The rainfall erosivity factor (R) was computed using the mean monthly Tropical Rainfall Measuring Mission rainfall estimates for 1998 to 2012. The slope length factor was derived using the ASTER and Cartosat DEMs at grid sizes of 30 m, 50 m, 100 m, 150 m, 200 m, and 250 m, and for the SRTM DEM at 100 m, 150 m, 200 m and 250 m resolutions for the Karso watershed, Jharkhand, India. Significant differences were obtained in the soil loss estimates across the different DEM sources and resampled grid sizes. The Cartosat DEM with a 200 m grid was found to estimate the soil loss the best out of all the DEM combinations considered. The Cartosat DEM proved to be more reliable than the ASTER and SRTM DEMs. The results indicated that the RUSLE is a scale-dependent model since the model estimates were affected not only by the DEM source but also by its resolution. The prediction of erosion potential by employing the multisource, multiresolution DEMs and the RUSLE helped to identify the soil erosion's spatial pattern within the watershed. The study provided an impact analysis of the uncertainties when selecting the multisource, multiresolution DEMs for soil erosion modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, N., Mahtab, A., Agrawal, R., Jayaprasad, P., Pathan, S. K., Singh, D. K., & Singh, A. K. (2007). Extraction and validation of Cartosat-1 DEM. Journal of the Indian Society of Remote Sensing, 35, 121–127.

    Article  Google Scholar 

  • Alcañiz, M., Úbeda, X., & Cerdà, A. (2020). A 13-year approach to understand the effect of prescribed fires and livestock grazing on soil chemical properties in Tivissa, NE Iberian Peninsula. Forests, 11(9), 1013.

    Article  Google Scholar 

  • Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment, 2003(97), 295–308.

    Article  Google Scholar 

  • Barrow, C. J. (1991). Land degradation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cerdà, A., Borja, M. E. L., Úbeda, X., Martínez-Murillo, J. F., & Keesstra, S. (2017). Pinus halepensis M. versus Quercus ilex subsp. Rotundifolia L. runoff and soil erosion at pedon scale under natural rainfall in Eastern Spain three decades after a forest fire. Forest Ecology and Management, 400, 447–456.

    Article  Google Scholar 

  • Cerdà, A., Rodrigo-Comino, J., Yakupoğlu, T., Dindaroğlu, T., Terol, E., Mora-Navarro, G., et al. (2020). Tillage versus no-tillage. Soil properties and hydrology in an organic persimmon farm in Eastern Iberian Peninsula. Water, 12(6), 1539.

    Article  Google Scholar 

  • Chaplot, V. (2005). Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology, 312, 207–222.

    Article  Google Scholar 

  • Chaubey, I., Cotter, A. S., Costello, T. A., & Soerens, T. S. (2005). Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes, 19, 621–628.

    Article  Google Scholar 

  • Chen, T., Niu, R. Q., Li, P. X., Zhang, L. P., & Du, B. (2011). Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: A case study in Miyun watershed, North China. Environmental Earth Sciences, 63, 533–541.

    Article  Google Scholar 

  • Cho, S. M., & Lee, M. (2001). Sensitivity considerations when modeling hydrologic processes with digital elevation model. The Journal of the American Water Resources Association, 37, 931–934.

    Article  Google Scholar 

  • Cochrane, T. A., & Flanagan, D. C. (2005). Effect of DEM resolutions in the runoff and soil loss predictions of the WEPP watershed model. Transaction on ASAE, 2005(48), 109–120.

    Article  Google Scholar 

  • Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70, 213.

    Article  Google Scholar 

  • Cohen, M. J., Shepherd, K. D., & Walsh, M. G. (2005). Empirical formulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma, 2005(124), 235–252.

    Article  Google Scholar 

  • Collischonn, B., Collischonn, W., & Tucci, C. E. M. (2008). Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360, 207–216.

    Article  Google Scholar 

  • Cotter, A. S., Chaubey, I., Costello, T. A., Soerens, T. S., & Nelson, M. A. (2003). Water quality model output uncertainty as affected by spatial resolution of input data. The Journal of the American Water Resources Association, 39, 977–986.

    Article  Google Scholar 

  • Dabral, P. P., Baithuri, N., & Pandey, A. (2008). Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management, 22, 1783–1798.

    Article  Google Scholar 

  • Datta, P., & Schack-Kirchner, H. (2010). Erosion relevant topographical parameters derived from different DEMsA comparative study from the Indian Lesser Himalayas. Remote Sensing, 2, 1941–1961.

    Article  Google Scholar 

  • Demirci, A., & Karaburun, A. (2012). Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, northwest Turkey. Environmental Earth Sciences, 66, 903–913.

    Article  Google Scholar 

  • deVente, J., Poesen, J., Govers, G., & Boix-Fayos, C. (2009). The implications of data selection for regional erosion and sediment yield modelling. Earth Surface Processes and Landforms, 34, 1994–2007.

    Article  Google Scholar 

  • Di Luzio, M., Srinivasan, R., & Arnold, J. G. (2004). A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transaction in GIS, 8, 113–136.

    Article  Google Scholar 

  • Diodato, N., & Bellocchi, G. (2007). Estimating monthly (R) USLE climate input in a mediterranean region using limited data. Journal of Hydrology, 345, 224–236.

    Article  Google Scholar 

  • Duncan, J., & Biggs, E. M. (2012). Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Applied Geography, 34, 626–638.

    Article  Google Scholar 

  • Fistikoglu, O., & Harmancioglu, N. B. (2002). Integration of GIS with USLE in assessment of soil erosion. Water Resources Management, 16, 447–467.

    Article  Google Scholar 

  • Fujisada, H., Bailey, G. B., Kelly, G. G., Hara, S., & Abrams, M. J. (2005). Aster dem performance. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2707–2714.

    Article  Google Scholar 

  • Ghosal, K., & Bhattacharya, S. D. (2020). A Review of RUSLE model. Journal of the Indian Society of Remote Sensing, 48, 689–707.

    Article  Google Scholar 

  • Hancock, G. R., Martinez, C., Evans, K. G., & Moliere, D. R. (2006). A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology: Australian examples. Earth Surface Processes and Landforms, 31, 1394–1412.

    Article  Google Scholar 

  • Hayakawa, Y. S., Oguchi, T., & Lin, Z. (2008). Comparison of new and existing global digital elevation models ASTER G-DEM and SRTM-3. Geophysical Research Letters, 35, L17404.

    Article  Google Scholar 

  • Hirt, C., Filmer, M. S., & Featherstone, W. E. (2010). Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4. 1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57, 337–347.

    Article  Google Scholar 

  • Islam, M. N., & Uyeda, H. (2007). Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sensing of Environment, 108, 264–276.

    Article  Google Scholar 

  • Jain, M. K., & Kothyari, U. C. (2000). Estimation of soil erosion and sediment yield using GIS. Hydrological Sciences Journal, 45, 771–786.

    Article  Google Scholar 

  • Kääb, A. (2005). Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94, 463–474.

    Article  Google Scholar 

  • Karaseva, M. O., Prakash, S., & Gairola, R. M. (2011). Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan. Theoretical and Applied Climatology, 108, 147–157.

    Article  Google Scholar 

  • Katiraie-Boroujerdy, P. S., Nasrollahi, N., Hsu, K. L., & Sorooshian, S. (2013). Evaluation of satellite-based precipitation estimation over Iran. Journal of Arid Environments, 97, 205–219.

    Article  Google Scholar 

  • Keesstra, S., Mol, G., de Leeuw, J., Okx, J., de Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals Four concepts to make land degradation neutrality and restoration work. Land, 7, 133.

    Article  Google Scholar 

  • Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., & Cerdà, A. (2018a). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 1557–1572.

    Article  Google Scholar 

  • Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S., & Cerdà, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. CATENA, 174, 95–103.

    Article  Google Scholar 

  • Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The tropical rainfall measuring mission (TRMM) sensor package. The Journal of Atmospheric and Oceanic Technology, 15, 809–817.

    Article  Google Scholar 

  • Li, J., & Wong, D. W. S. (2010). Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems, 34, 251–261.

    Article  Google Scholar 

  • Lin, S., Jing, C., Chaplot, V., Yu, X., Zhang, Z., Moore, N., & Wu, J. (2010). Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrology and Earth System Sciences Discussions, 7, 4411–4435.

    Google Scholar 

  • Lin, S., Jing, C., Coles, N. A., Chaplot, V., Moore, N. J., & Wu, J. (2013). Evaluating DEM source and resolution uncertainties in the soil and water assessment tool. Stochastic Environmental Research and Risk Assessment, 27, 209–221.

    Article  Google Scholar 

  • Liu, X., Zhang, S., Zhang, X., Ding, G., & Cruse, R. M. (2009). Soil erosion control practices in Northeast China: A mini-review. Soil and Tillage Research, 117, 44–48.

    Article  Google Scholar 

  • López-Vicente, M., Calvo-Seas, E., Álvarez, S., & Cerdà, A. (2020). Effectiveness of cover crops to reduce loss of soil organic matter in a Rainfed vineyard. Land, 9, 230.

    Article  Google Scholar 

  • Molnár, D. K., & Julien, P. Y. (1998). Estimation of upland erosion using GIS. Computers and Geosciences, 24, 183–192.

    Article  Google Scholar 

  • Mondal, A., Khare, D., & Kundu, S. (2017). Uncertainty analysis of soil erosion modelling using different resolution of open-source DEMs. Geocarto International, 32, 334–349.

    Article  Google Scholar 

  • Moore, I., & Burch, G. (1986). Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50, 1294–1298.

    Article  Google Scholar 

  • Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205–217.

    Article  Google Scholar 

  • Muralikrishnan, S., Pillai, A., Narender, B., Reddy, S., Venkataraman, V. R., & Dadhwal, V. K. (2013). Validation of Indian national DEM from Cartosat-1 data. Journal of the Indian Society of Remote Sensing, 41, 1–13.

    Article  Google Scholar 

  • Murthy, Y. N. K., Rao, S. S., Rao, D. S., & Jayaraman, V. (2008). Analysis of DEM generated using Cartosat-1 stereo data over Mausanne Les alpines-Cartyosat—Scientific appraisal programme (CSAP TS-5). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1343–1348.

    Google Scholar 

  • Narayana, D. V., & Babu, R. (1983). Estimation of soil erosion in India. Journal of Irrigation and Drainage Engineering, 109, 419–434.

    Article  Google Scholar 

  • Nikolakopoulos, K. G., Kamaratakis, E. K., & Chrysoulakis, N. (2006). SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. International Journal of Remote Sensing, 27, 4819–4838.

    Article  Google Scholar 

  • Novara, A., Stallone, G., Cerdà, A., & Gristina, L. (2019). The effect of shallow tillage on soil erosion in a semi-arid vineyard. Agronomy, 9(5), 257.

    Article  Google Scholar 

  • Onyando, J. O., Kisoyan, P., & Chemelil, M. C. (2005). Estimation of potential soil erosion for river perkerra catchment in Kenya. Water Resources Management 19, 133–143.

    Article  Google Scholar 

  • Pandey, A., Chowdary, V. M., & Mal, B. C. (2007). Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management, 21, 729–746.

    Article  Google Scholar 

  • Pandey, A., Chowdary, V. M., Mal, B. C., & Billib, M. (2008). Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology, 348, 305–319.

    Article  Google Scholar 

  • Pandey, A., Mathur, A., Mishra, S. K., & Mal, B. C. (2009). Soil erosion modeling of a Himalayan watershed using RS and GIS. Environmental Earth Sciences, 59, 399–410.

    Article  Google Scholar 

  • Prasuhn, V., Liniger, H., Gisler, S., Herweg, K., Candinas, A., & Clément, J. P. (2013). A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy, 32, 281–291.

    Article  Google Scholar 

  • Quiquerez, A., Chevigny, E., Allemand, P., Curmi, P., Petit, C., & Grandjean, P. (2014). Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, Burgundy, France). CATENA, 116, 163–172.

    Article  Google Scholar 

  • Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241–262.

    Article  Google Scholar 

  • Rao, Y. P. (1981). Evaluation of cropping management factor in universal soil loss equation under natural rainfall condition of Kharagpur, India. In Proceedings of Southeast Asian regional symposium on problems of soil erosion and sedimentation. Asian Institute of Technology, Bangkok, Thailand (pp. 241–254).

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Handbook of Agriculture, 703, 1–367.

    Google Scholar 

  • Renschler, C. S., & Harbor, J. (2002). Soil erosion assessment tools from point to regional scales the role of geomorphologists in land management research and implementation. Geomorphology, 47, 189–209.

    Article  Google Scholar 

  • Rodrigo-Comino, J. (2018). Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Science Reviews, 179, 436–447.

    Article  Google Scholar 

  • Rodrigo-Comino, J., Giménez-Morera, A., Panagos, P., Pourghasemi, H. R., Pulido, M., & Cerdà, A. (2020). The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. Land Degradation and Development., 31, 1877–1889.

    Article  Google Scholar 

  • Rodrigo-Comino, J., Keesstra, S., & Cerdà, A. (2018). Soil erosion as an environmental concern in vineyards: the case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. Beverages, 4(2), 31.

    Article  Google Scholar 

  • Shamshad, A., Azhari, M. N., Isa, M. H., WanHussin, W. M. A., & Parida, B. P. (2008). Development of an appropriate procedure for estimation of RUSLEEI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. CATENA, 72, 423–432.

    Article  Google Scholar 

  • Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Determining the optimum cell size of digital elevation model for hydrologic application. Journal of Earth System Science, 120, 573–582.

    Article  Google Scholar 

  • Singh, G., Chandra, S., & Babu, R. (1981). Soil loss and prediction research in India. New York: Central Soil and Water Conservation Research Training Institute.

    Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9, 893–906.

    Article  Google Scholar 

  • Van Oost, K., Govers, G., & Desmet, P. J. J. (2000). Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology, 15, 577–589.

    Article  Google Scholar 

  • Van Rompaey, A. J. J., Verstraeten, G., van Oost, K., Govers, G., & Poesen, J. (2001). Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 26, 1221–1236.

    Article  Google Scholar 

  • Verstraeten, G. (2006). Regional scale modelling of hillslope sediment delivery with SRTM elevation data. Geomorphology, 81, 128–140.

    Article  Google Scholar 

  • Vieux, B. F., & Needham, S. (1993). Nonpoint pollution model sensitivity to grid cell size. Journal of Water Resources Planning and Management, 119, 141–157.

    Article  Google Scholar 

  • Vrieling, A., De Jong, S. M., Sterk, G., & Rodrigues, S. C. (2008). Timing of erosion and satellite data: A multi-resolution approach to soil erosion risk mapping. International Journal of Applied Earth Observation and Geoinformation, 10, 267–281.

    Article  Google Scholar 

  • Vrieling, A., Sterk, G., & de Jong, S. M. (2010). Satellite-based estimation of rainfall erosivity for Africa. Journal of Hydrology, 395, 235–241.

    Article  Google Scholar 

  • Walker, J. P., & Willgoose, G. R. (1999). On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35, 2259–2268.

    Article  Google Scholar 

  • Wechsler, S. P. (2007). Uncertainties associated with digital elevation models for hydrologic applications: A review. Hydrology and Earth System Sciences Discussions, 11, 1481–1500.

    Article  Google Scholar 

  • Wu, S., Li, J., & Huang, G. (2005). An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models. Environmental Modeling and Assessment, 10, 33–42.

    Article  Google Scholar 

  • Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability, 3(1), 51–55.

    Article  Google Scholar 

  • Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). Geoscience and Remote Sensing, 36, 1062–1071.

    Article  Google Scholar 

  • Yu, Z. (1997). Grid-spacing effect on watershed hydrologic simulations. Hydrological Science and Technology, 1997(13), 75–86.

    Google Scholar 

  • Zhang, J. X., Chang, K. T., & Wu, J. Q. (2008). Effects of DEM resolution and source on soil erosion modelling: A case study using the WEPP model. International Journal of Geographical Information Science, 22, 925–942.

    Article  Google Scholar 

Download references

Acknowledgments

The hydrological data provided by Damodar Valley Corporation (DVC), Hazaribagh, India, and facilities provided by the Department of Water Resources Development and Management, IIT Roorkee, be highly appreciated.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Gautam, A.K., Chowdary, V.M. et al. Uncertainty Assessment in Soil Erosion Modelling Using RUSLE, Multisource and Multiresolution DEMs. J Indian Soc Remote Sens 49, 1689–1707 (2021). https://doi.org/10.1007/s12524-021-01351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01351-4

Keywords

Navigation