Skip to main content
Log in

Estimation and Validation of Actual Evapotranspiration (ETa) of Maize Wheat Cropping System Using SSEBop Model Over IARI Research Farm, New Delhi, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Evapotranspiration (ET) is an indispensable component of earth surface energy exchange studies and forms basis for various environmental applications. The present study attempts to estimate Landsat-8 satellite-based spatial distribution of crop ET using Operational Simplified Surface Energy Balance (SSEBop) model and validate through ET estimated using multilevel micrometeorological tower-based Bowen Ratio Energy Balance (BREB). The study was conducted over Indian Agricultural Research Institute farm during the summer (kharif maize) and winter (wheat) season of 2017–2018. The result of BREB showed the intra-seasonal variations in actual ET estimation ranging from maximum ET of 3.84 mm day−1 and 2.64 mm day−1 for maize and wheat during mid-stage to minimum ET of 1.88 mm day−1 for maize in maturity and 1.14 mm day−1 in an initial stage of wheat. It was observed that SSEBop slightly overestimated the crop ET; however, it showed the good agreement with BREB estimated ET (R2 = 0.76) with d-index of 0.92 and root-mean-square error of 0.48 mm day−1. It can be concluded that despite slight overestimation of ET by SSEBop, satellite-based SSEBop model can be recommended for crop ET estimation over large area and can be used for various water management studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, R. G., Ma, T., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133, 380–394.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. Fao Rome, 300, D05109.

    Google Scholar 

  • Allen, R. G., Tasumi, M., Morse, A., & Trezza, R. (2005). A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation Drainage System, 19(3–4), 251–268.

    Article  Google Scholar 

  • Angus, D. E., & Watts, P. J. (1984). Evapotranspiration—How good is the Bowen ratio method? Agricultural Water Management, 8(1–3), 133–150.

    Article  Google Scholar 

  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1–8.

    Article  Google Scholar 

  • Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., & Van Der Wal, T. (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology, 212–213(1–4), 213–229.

    Article  Google Scholar 

  • Bowen, I. S. (1926). The ratio of heat losses by conduction and by evaportion from any water surface. Phys Review Journal, 27(1925), 779–787.

    Article  Google Scholar 

  • Fritschen, L. J., & Fritschen, C. L. (2005). Bowen ratio energy balance method. Micrometeorology in Agricultural Systems, 47, 397–405.

    Google Scholar 

  • Fritschen, L. J., & Simpson, J. R. (1989). Surface energy and radiation balance systems: General description and improvements. Journal of Applied Meteorology and Climatology, 28(7), 680–689.

    Article  Google Scholar 

  • Fritschen, . (1965). Accuracy of evapotranspiration determinations by the Bowen ratio method. International Association of Scientific Hydrology, Bulletin, 10(2), 38–48.

    Article  Google Scholar 

  • Gavilán, P., & Berengena, J. (2007). Accuracy of the Bowen ratio-energy balance method for measuring latent heat flux in a semiarid advective environment. Irrigation Science, 25(2), 127–140.

    Article  Google Scholar 

  • Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: Present status and challenges. Irrigation Science, 26(3), 223–237.

    Article  Google Scholar 

  • Immerzeel, W. W., Droogers, P., & Gieske, A. (2006). Remote sensing and evapotranspiration mapping: State of the art. Future Water.

  • Irmak, S., Skaggs, K. E., & Chatterjee, S. (2014). A review of the Bowen ratio surface energy balance method for quantifying evapotranspiration and other energy fluxes. Transactions of the ASABE, 57(6), 1657–1674.

    Google Scholar 

  • Jackson, R. D., Reginato, R. J., & Idso, S. B. (1977). Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resources Research, 13(3), 651–656.

    Article  Google Scholar 

  • Jensen, M. E., Burmann, R. D., & Allen, R. G. (2016). Evaporation, evapotranspiration, and irrigation water requirements. American Society of Civil Engineers.

    Google Scholar 

  • Jin, Y., He, R., Marino, G., Whiting, M., Kent, E., Sanden, B. L., Culumber, M., Ferguson, L., Little, C., & Grattan, S. (2018). Spatially variable evapotranspiration over salt affected pistachio orchards analyzed with satellite remote sensing estimates. Agricultural and Forest Meteorology, 262, 178–191.

    Article  Google Scholar 

  • Kanemasu, E., Verma, S., Smith, E., Fritschen, L., Wesely, M., Field, R., Kustas, W., Weaver, H., Stewart, J., Gurney, R., & Panin, G. (1992). Surface flux measurements in FIFE: An overview. Journal of Geophysical Research, 395(D17), 18547–18555.

    Article  Google Scholar 

  • Liang, S., Li, X., & Wang, J. (2012). Terrestrial evapotranspiration. In S. Liang & J. Wang (eds.) Advanced remote sensing (pp. 557–588). Academic Press.

  • Lloyd, W. G. (1992). Bowen-ratio measurements: Evapotranspiration measurements of native vegetation, Owens Valley. U.S. Geological Survey. Water resource investigation report, 91-4159(06):5–18.

  • McShane, R. R., Driscoll, K. P., & Sando, R. (2017). A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents. Scientific investigations report 2017-5087. U.S. Geological Survey.

  • Menenti, M., & Choudhury, B. J. (1993). Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range. In Proceedings of IAHS conference on land surface processes (pp. 561–568).

  • Mukherjee, J., Bal, S. K., Singh, G., Bhattacharya, B. K., Singh, H., & Kaur, P. (2012). Surface energy fluxes in wheat (Triticum aestivum L.) under irrigated ecosystem. Journal of Agrometeorology, 14(1), 16–20.

    Google Scholar 

  • Mukherjee, J., & Mondal, S. (2017). Comparison of crop evapotranspiration by FAO, BREB and Pristley–Taylor methods in mustard crop in central Bihar region. Journal of AgriSearch, 4(1), 55–59.

    Article  Google Scholar 

  • Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3–4), 263–293.

    Article  Google Scholar 

  • Perez, P. J., Castellvi, F., Ibañez, M., & Rosell, J. I. (1999). Assessment of reliability of Bowen ratio method for partitioning fluxes. Agricultural and Forest Meteorology, 97(3), 141–150.

    Article  Google Scholar 

  • Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147–157.

    Article  Google Scholar 

  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. Journal of the American Water Resources Association, 49(3), 577–591.

    Article  Google Scholar 

  • Senay, G. B., Budde, M. E., & Verdin, J. P. (2011). Enhancing the simplified surface energy balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agricultural Water Management, 98(4), 606–618.

    Article  Google Scholar 

  • Senay, G. B., Budde, M., Verdin, J. P., & Melesse, A. M. (2007). A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors, 7(6), 979–1000.

    Article  Google Scholar 

  • Senay, G. B., Friedrichs, M., Singh, R. K., & Manohar, N. (2016). Environment evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment, 185, 171–185.

    Article  Google Scholar 

  • Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., & Glenn, E. P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), 4037–4049.

    Article  Google Scholar 

  • Singh, R. K., Senay, G. B., Velpuri, N. M., Bohms, S., Scott, R. L., & Verdin, J. P. (2014). Actual evapotranspiration (water use) assessment of the Colorado river basin at the Landsat resolution using the operational simplified surface energy balance model. Remote Sensing, 6(1), 233–256.

    Article  Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Article  Google Scholar 

  • Spittlehouse, D. L., & Black, T. A. (1980). Evaluation of the Bowen ratio/energy balance method for determining forest evapotranspiration. Atmosphere-Ocean, 18(2), 98–116.

    Article  Google Scholar 

  • Su, Z. (2002). The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100.

    Article  Google Scholar 

  • Todd, R., Evett, S. R., & Howell, T. A. (2000). The Bowen ratio-energy balance method for estimating latent heat flux of irrigated aflalfa. Agricultural and Forest Meteorology, 103(4), 335–348.

    Article  Google Scholar 

  • Yang, Y., Anderson, M. C., Gao, F., Hain, C. R., Semmens, K. A., Kustas, W. P., Noormets, A., Wynne, R. H., Thomas, V. A., & Sun, G. (2017). Daily landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrology and Earth System Sciences, 21(2), 1017–1037.

    Article  Google Scholar 

  • Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 834–853.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, J., Sharma, A., Dhakar, R. et al. Estimation and Validation of Actual Evapotranspiration (ETa) of Maize Wheat Cropping System Using SSEBop Model Over IARI Research Farm, New Delhi, India. J Indian Soc Remote Sens 49, 1823–1837 (2021). https://doi.org/10.1007/s12524-021-01350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01350-5

Keywords

Navigation