Skip to main content
Log in

Spectral Signature-Based Water Stress Characterization and Prediction of Wheat Yield under Varied Irrigation and Plant Bio-regulator Management Practices

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Canopy reflectance based spectral indices help in effective irrigation scheduling of wheat for optimization of yield in water-scarce regions. A field experiment for two consecutive years (2013 to 2015) was conducted to evaluate the responses of wheat crop to exogenous application of  plant bio-regulators (PBRs) in the water-scarce Deccan region of India (Baramati, Pune, Maharashtra). We predicted grain and biomass yields of wheat using water stress-sensitive spectral indices under varied water regimes. The water regimes were seven levels of irrigation water (equaling to 1.00, 0.85, 0.70, 0.55, 0.40, 0.25 and 0.10 times of cumulative open pan evaporation, CPE) and applied using a line-source sprinkler system). There were five PBRs, viz. thiourea, salicylic acid, potassium nitrate, gibberellin and ortho−silicic, with concentration 10 mM, 10 μM, 15 g L−1, 25 ppm and 8 ppm, respectively, applied at various growth stages, namely crown root initiation, flag leaf and seed milking stages. Water stress indices were computed from spectral reflectance pattern recorded at different crop growth stages using ASD FieldSpec-4 Spectroradiometer (350–2500 nm). The PBRs significantly influenced the canopy reflectance pattern and maintained superior values of water stress indices over the control (without PBRs) by stabilizing leaf pigments and water contents, controlling the stomatal opening and better water use. Among the five PBRs, thiourea and salicylic acid mitigated water stress better and improved overall grain yield (4.6–17.5%) and total biomass (3.6–15.3%). There was no significant (p < 0.05) variation in both yields (grains and biomass) up to IW: CPE 0.70, indicating that irrigation scheduling at 0.70 IW: CPE could be a better option rather than full irrigation in water-scarce areas. At flowering and milking stages, all spectral indices were correlated significantly with the wheat yields. Thus, these stages could be considered as more water-sensitive stages during entire wheat growth period. Regression models based on WI and NWI-2 accounted for 92% and 78% variation in the observed yields for grain and biomass, respectively, with minimum root-mean square error. Hence, to predict the grain and biomass yields of wheat, regression models based on WI and NWI-2 at milking stage can be used successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

-source sprinkler system

Fig. 2

-source sprinkler system

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous. (2015). Indian wheat database. Karnal: Directorate of Wheat Research.

    Google Scholar 

  • Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing and Environment, 64, 234–253.

    Article  Google Scholar 

  • Babar, M. A., Reynolds, M. P., Van-Ginkel, M., Klatt, A. R., Raun, W. R., & Stone, M. L. (2006). Spectral reflectance indices as a potential indirect selection criterion for Wheat yield under irrigation. Crop Science, 46, 578–588.

    Article  Google Scholar 

  • Bal, S. K., Choudhury, B. U., Sood, A., Saha, S., Mukherjee, J., Singh, H., & Kaur, P. (2013). Relationship between leaf area index of wheat crop and different spectral indices in Punjab. Journal of Agrometeorology, 15(2), 98–102.

    Google Scholar 

  • Bal, S. K., & Hundal, S. S. (1999). Water–use efficiency of chickpea (Cicer arietinum L.) using line-source sprinkler technique. Indian Journal of Agricultural Sciences, 69(10), 733–739.

    Google Scholar 

  • Bal, S. K., & Minhas, P. S. (2017). Atmospheric stressors: Challenges and coping strategies. In P. S. Minhas (Ed.), Abiotic stress management for resilient agriculture (pp. 9–50). Singapore: Springer Nature.

  • Bal, S. K., Mukherjee, J., Mallick, K., & Hundal, S. S. (2004). Wheat yield forecasting models for Ludhiana district of Punjab state. Journal of Agrometeorology, 6, 161–165.

    Google Scholar 

  • Bandyopadhyay, K. K., Misra, A. K., Ghosh, P. K., Hati, K. M., Mandal, K. G., & Mohanty, M. (2010). Effect of irrigation and nitrogen application methods on input use efficiency of wheat underlimited water supply in a Vertisol of Central India. Irrigation Science, 28, 285–299.

    Article  Google Scholar 

  • Bandyopadhyay, K. K., Pradhan, S., Sahoo, R. N., Singh, R., Gupta, V. K., Joshi, D. K., & Sutradhar, A. K. (2014). Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices. Agricultural Water Management, 146, 115–123.

    Article  Google Scholar 

  • Bhunia, R., Verma, I. M., Sahu, M. P., Sharma, N. C., & Balai, K. (2015). Effect of drip irrigation and bio-regulators on yield, economics and water use of fenugreek (Trigonella foenum-graecum). Journal of Spices and Aromatic Crops, 24(2), 102–105.

    Google Scholar 

  • Bian, C., Ma, C., Liu, X., Gao, C., Liu, Q., Yan, Z., et al. (2016). Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE, 11(5), e0154673. https://doi.org/10.1371/journal.pone.0154673.

    Article  Google Scholar 

  • Bukhat, N.M. (2005). Studies in yield and yield associated traits of wheat (Triticum aestivum L.) genotypes under drought conditions. In: M.Sc. Thesis. Department of Agronomy, Sindh Agriculture University, Tandojam, Pakistan.

  • Carter, G. A. (1993). Responses of leaf spectral reflectance to plant stress. American Journal of Botany, 80, 239–243.

    Article  Google Scholar 

  • Champagne, C. M., Staenz, K., Bannari, A., Mcnairn, H., & Deguise, J. C. (2003). Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies. Remote Sensing and Environment, 87, 148–160.

    Article  Google Scholar 

  • Chen, D., Huang, J., & Jackson, T. J. (2005). Vegetation water content estimation for corn and soybeans using spectral indices from MODIS near- and short-wave infrared bands. Remote Sensing and Environment, 98, 225–236.

    Article  Google Scholar 

  • Choudhury, B. U., Sood, A., Ray, S. S., Jalota, S. K., Sharma, P. K., & Panigrahy, S. S. (2013). Agricultural area diversification and crop water demand: A remote sensing and GIS approach. Journal of Indian Society of Remote Sensing, 41(1), 71–82. https://doi.org/10.1007/s12524-011-0194-z.

    Article  Google Scholar 

  • Choudhury, B. U., Webster, R., Sharma, V., Goswami, J., Meetei, T. T., Krishnappa, R., & Raju, P. L. N. (2019). Frost damage to maize in northeastern India: Detection and assessment by hyperspectral proximal remote sensing. Journal of Applied Remote Sensing (JARS), 13(4), 044527. https://doi.org/10.1117/1.JRS.13.044527.

    Article  Google Scholar 

  • Davidson, A., Wang, S., & Wilmshurst, J. (2006). Remote sensing of grassland-shrub and vegetation water content in the shortwave domain. International Journal of Applied Earth Observations and Geoinformation, 8, 225–236.

    Article  Google Scholar 

  • Ehrler, W. L., Idso, S. B., Jackson, R. D., & Reginato, R. J. (1978). Wheat canopy temperature: Relation to plant water potential. Agronomy journal. https://doi.org/10.2134/agronj1978.00021962007000020010x.

    Article  Google Scholar 

  • Gimeno, V., Diaz-Lopez, L., Simon-Grao, S., Martinez, V., Martinez-Nicolas, J. J., & Garcia-Sanchez, F. (2014). Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiology and Biochemistry, 83, 308–315.

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. New York, NY: JohnWiley and Sons.

    Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environment and Experimental Botany, 68, 14–25.

    Article  Google Scholar 

  • Jones, H. G. (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58(2), 119–130.

    Article  Google Scholar 

  • Joseph, G. (2005). Fundamentals of remote sensing. Hyderabad, AP, India: Universities Press (India) Private Limited.

    Google Scholar 

  • Kjelgren, R., & Cerny, K. T. (2006). Evaluating a line source irrigation system for determining water requirements of herbaceous perennials. Journal of Environmental Horticulture, 24, 225–229.

    Article  Google Scholar 

  • Nanda, M.K, Giri, U. & Bera, N. (2018) Canopy temperature-based water stress indices: Potential and limitations. In: (Bal et al. eds) Advances in crop environment interaction, Springer Nature Pvt. Ltd. pp.365–385, https://doi.org/10.1007/978-981-13-1861-0_14

  • Nouri, A., Etminan, A., Teixeira-da-Silva, J., & Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turgidum var. Durum Desf.). Australian Journal of Crop Sciences, 5, 8–16.

    Google Scholar 

  • Pandey, M., Srivastava, A. K., D’Souza, S. F., & Penna, S. (2013). Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.). PLoS ONE, 8, e73921.

    Article  Google Scholar 

  • Penuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance of950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14, 1887–1905.

    Article  Google Scholar 

  • Prasad, B., Carver, B. F., Stone, M. L., Babar, M. A., Raun, W. R., & Klatt, A. R. (2007). Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under great plains conditions. Crop Science, 47, 1426–1440.

    Article  Google Scholar 

  • Rao, S. S., Regar, P. L., Tanwar, S. P. S., & Singh, Y. V. (2013). Wheat yield response to line source sprinkler irrigation and soil management practices on medium-textured shallow soils of arid environment. Irrigation Science, 31, 1185–1197.

    Article  Google Scholar 

  • Ratnakumar, P., Minhas, P. S., Wakchaure, G. C., Choudhary, R. L., & Deokate, P. P. (2016). Yield and water production functions of wheat (Triticum aestivum L.) cultivars and response to exogenous application of thiourea and ortho-silicic acid. International Journal of Agricultural and Environmental Research, 2(6), 1629–1650.

    Google Scholar 

  • Ray, S. S., Das, G., Singh, J. P., & Panigrahy, S. (2007). Evaluation of Hyperspectral Indices for LAI Estimation and Discrimination of Potato Crop under Different Irrigation Treatments. International Journal of Remote Sensing, 27(24), 5373–5387.

    Article  Google Scholar 

  • Reynolds, M. P., Pask, A. J. D., & Mullan, D. M. (2012). Physiological breeding I: Interdisciplinary approaches to improve crop adaptation. Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Saha, S., Minhas, P.S., Bal, S.K. & Singh, Y. (2015). Trends in climatic features and greenhouse gas exchange of crops in scarcity zone (Baramati) of western Maharashtra. NIASM technical bulletin No.6, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune Maharashtra, India p.44.

  • Sarlikioti, V., de Visser, P. H. B., Buck-Sorlin, G. H. L., & Marcelis, F. M. (2011). How plant architecture affects light absorption and photosynthesis in tomato: Towards an ideotype for plant architecture using a functional–structural plant model. Annals of Botany, 108(6), 1065–1073. https://doi.org/10.1093/aob/mcr221.

    Article  Google Scholar 

  • Singh, R. B., Chauhan, C. P. S., & Minhas, P. S. (2009). Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system. Agricultural Water Management, 96, 736–744.

    Article  Google Scholar 

  • Singh, R. B., Ray, S. S., Bal, S. K., Sekhon, B. S., Gill, G. S., & Panigrahy, S. (2013). Crop Residue discrimination using ground-based hyper-spectral data. Journal of Indian Society of Remote Sensing., 41(2), 301–308. https://doi.org/10.1007/s12524-012-0226-3.

    Article  Google Scholar 

  • Slatyer, R. O. (1967). Plant-Water Relationships. Academic Press, New York, NY. Stimson, HC, Breshears, TDD, Ustin, SL, Kefauver, SC (2005) Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinusedulis and Juniperus monosperma. Remote Sensing and Environment, 96, 108–118.

    Google Scholar 

  • Thenkabail, P. S., Lyon, J. G., & Huete, A. (2011). Hyperspectral remote sensing of vegetation. Taylor and Francis Group: CRC Press.

    Google Scholar 

  • Tuna, A. L., Kaya, C., Higgs, D. E. B., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environment and Experimental Botany, 62, 10–16.

    Article  Google Scholar 

  • Ustin, S.L., Riana, D., & Hunt, E.R. (2012). Estimating canopy water content from spectroscopy. Israel Journal of Plant Science, 60, 9–23.

  • Wakchaure, G. C., Minhas, P. S., Meena, K. K., Kumar, S., & Rane, J. (2020). Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment. Journal of Environmental Management, 262, 110320. https://doi.org/10.1016/j.jenvman.2020.110320.

    Article  Google Scholar 

  • Wakchaure, G. C., Minhas, P. S., Ratnakumar, P., & Choudhary, R. L. (2016a). Optimizing supplemental irrigation for wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India. Agricultural Water Management, 172, 9–17.

    Article  Google Scholar 

  • Wakchaure, G. C., Minhas, P. S., Ratnakumar, P., & Choudhary, R. L. (2016b). Effect of plant bioregulators on growth, yield and water production functions of sorghum [Sorghum bicolor (L.) Moench]. Agricultural Water Management, 172, 138–145.

    Article  Google Scholar 

  • Wang, S. G., Jia, S. S., Sun, D. Z., Wang, H. Y., Dong, F. F., Ma, H. X., et al. (2015). Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Photosynthetica, 53(2), 299–305. https://doi.org/10.1007/s11099-015-0114-5.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune, India, and Indian Council of Agricultural Research, New Delhi, India, for the support of the research grant under which the study was taken. Authors also gratefully acknowledge the guidance and help of other scientists/technicians during the conduct of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Kumar Bal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, S.K., Wakchaure, G.C., Potekar, S. et al. Spectral Signature-Based Water Stress Characterization and Prediction of Wheat Yield under Varied Irrigation and Plant Bio-regulator Management Practices. J Indian Soc Remote Sens 49, 1427–1438 (2021). https://doi.org/10.1007/s12524-021-01325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01325-6

Keywords

Navigation