Skip to main content

Advertisement

Log in

A Review of IRS-1C Applications in Urban and Regional Studies, and Infrastructure Planning

  • Review Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The multifaceted data from Indian remote sensing satellite (IRS)-1C with Panchromatic (PAN, 5.8 m, 0.50–0.75 μm), Linear Imaging Self-Scanning Sensor-III (LISS-III, 23.5 m, four multi-spectral bands) and Wide Field Sensor (WiFS, 188 m, red and near-infrared bands) sensors onboard, along with stereo imaging and 5-day revisit capability have been effectively utilised for mapping, monitoring, planning and development of urban and regional areas. It made possible to explore urban and regional areas either independently or in combination with other remote sensing data for base map preparation, land use survey and planning, growth modelling, environment and hazards analysis, utilities and infrastructure planning, etc. This review article articulates the scale and mapping potential of IRS-1C data for urban and regional areas, data fusion methods and information retrieval based on visual or digital image processing techniques, including advanced classifiers. It recapitulates the application potential demonstrated in last 25 years in urban and regional studies, and for infrastructure planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Maithani et al. (2010)

Fig. 3

Source: Rao et al. (2013)

Fig. 4

Source: Ravindranath and Raj (2005)

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ansari, R. A., & Buddhiraju, K. M. (2019). Textural segmentation of remotely sensed images using multiresolution analysis for slum area identification. European Journal of Remote Sensing, 52(sup2), 74–88.

    Article  Google Scholar 

  • Arathyram, R. K., & Rao, V. (2013). Characterisation of urban heat islands in one of the most urbanised corridors of India from space based multi-sensor, spatio-temporal data. In AGSE 2013 ‘Geospatial Momentum for Society and Environment’. Ahmedabad, Gujarat, India: Applied Geoinformatics for Society and Environment.

  • Armenakis, C., & Savopol, F. (1998). Mapping potential of the IRS-1C PAN satellite imagery. International Archives of Photogrammetry and Remote Sensing, 32, 23–26.

    Google Scholar 

  • AUDA. (1997). Revised development plan of Ahmedabad Development Authority area-2011, Vol.1: Remote Sensing and GIS approach. Technical Report: SAC/RSAG/TR/12.

  • Azimov, O. T., & Shevchuk, O. V. (2020). Geoinformation systems in monitoring studies of environmental pollution factors in the areas of municipal solid waste landfills. Geoinformatics: Theoretical and Applied Aspects, 2020(1), 1–7.

    Google Scholar 

  • Banzhaf, E., & Netzband, M. (2000). Analysis and evaluation of nature space potential in peri-urban spaces using remote sensing data and GIS. International Archives of Photogrammetry and Remote Sensing33(B7/1; PART 7), 118–125.

  • Barranco, R. R., Silva, F. B. E., Marin Herrera, M., & Lavalle, C. (2014). Integrating the MOLAND and the urban atlas geo-databases to analyse urban growth in European cities. Journal of Map & Geography Libraries, 10(3), 305–328.

    Article  Google Scholar 

  • Benediktsson, J. A., Pesaresi, M., & Amason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949.

    Article  Google Scholar 

  • Bochenek, Z. (2005). Application of various change detection methods for analysis of urban environment. In New Strategies for European Remote Sensing, Oluiþ (ed.), Millpress, Rotterdam.

  • Chaudhuri, D., & Samal, A. (2008). An automatic bridge detection technique for multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 46(9), 2720–2727.

    Article  Google Scholar 

  • Cheng, P., & Toutin, T. (1998). Unlocking the potential for IRS-1C data. Earth Observation Magazine, 7(3), 24–26.

    Google Scholar 

  • Cowen, D. J., & Jensen, J. R. (1998). Extraction and modeling of urban attributes using remote sensing technology. In D. Liverman, E. F. Morna, R. R. Rindfuss, & P. C. Stern (Eds.), People and pixels: linking remote sensing and social science (pp. 164–188). Washington, DC: National Academy Press.

    Google Scholar 

  • Davudirad, A. A., Sadeghi, S. H., & Sadoddin, A. (2016). The impact of development plans on hydrological changes in the Shazand Watershed, Iran. Land Degradation & Development, 27(4), 1236–1244.

    Article  Google Scholar 

  • Dikshit, A. K., Padmavathi, T., & Das, R. K. (2001). Locating potential landfill sites using geographic information systems. Journal of Environmental Systems, 28(1), 43–54.

    Google Scholar 

  • Diwakar, P. G., Raghavaswamy, V., Saha, S. K., Kiran Kumar, A. S., Dadhwal, V. K., & Shivakumar, S. K. (2013). Indian remote sensing satellite series and applications: a saga of 25 years. Bulletin of National Natural Resources Management System, NNRMS (B)-37.

  • Dutta, V. (2012). Land use dynamics and peri-urban growth characteristics: Reflections on master plan and urban suitability from a sprawling north Indian city. Environment and Urbanization Asia, 3(2), 277–301.

    Article  Google Scholar 

  • Dwivedi, R. S., Satyanarayana, P., Rao, C. V., & Manjunath, A. S. (1998). Evaluation of RADARSAT SAR data for detection of terrain features. International Archives of Photogrammetry and Remote Sensing, 32, 196–203.

    Google Scholar 

  • Elghazali, E. S. (2006). Assessment of Indian satellite (IRS-1C) imagery for production of 1: 25,000 planimetric city maps. ISPRS WG VIII/10 Workshop, Part-7.

  • Faryadi, S., & Taheri, S. (2009). Interconnections of urban green spaces and environmental quality of Tehran. International Journal of Environmental Research, 3(2), 199–208.

    Google Scholar 

  • Fazal, S. (2000). Urban expansion and loss of agricultural land—A GIS based study of Saharanpur City, India. Environment and Urbanization, 12(2), 133–149.

    Article  Google Scholar 

  • Gautam, N. C. (1997). IRS-1C applications for land use/land cover mapping, change detection and planning. In IGARSS’97: IEEE international geoscience and remote sensing symposium proceedings. Remote SensingA Scientific Vision for Sustainable Development, 4 (pp. 1775–1777).

  • Gupta, A. K., Sharma, J. R., Sreenivasan, G., & Srivastava, K. S. (2004). New findings on the course of river Sarasvati. Journal of the Indian Society of Remote Sensing, 32(1), 1–24.

    Article  Google Scholar 

  • Gupta, K. (2013). Unprecedented growth of Dehradun urban area: a spatio-temporal analysis. International Journal of Advanced Remote Sensing and GIS Geography., 1(2), 6–15.

    Google Scholar 

  • Hamdi, R. (2010). Estimating urban heat island effects on the temperature series of Uccle (Brussels, Belgium) using remote sensing data and a land surface scheme. Remote Sensing, 2(12), 2773–2784.

    Article  Google Scholar 

  • Hasager, C. B., & Thykier-Nielsen, S. (2001). IRS-1C LISS-III land cover maps at different spatial resolutions used in real-time accidental air pollution deposition modelling. Remote Sensing of Environment, 76(3), 326–336.

    Article  Google Scholar 

  • Herold, M., & Roberts, D. A. (2010). The spectral dimension in urban remote sensing. Remote sensing of urban and suburban areas (pp. 47–65). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hwang, S. J., Lee, S. W., Son, J. Y., Park, G. A., & Kim, S. J. (2007). Moderating effects of the geometry of reservoirs on the relation between urban land use and water quality. Landscape and Urban Planning, 82(4), 175–183.

    Article  Google Scholar 

  • Jacobsen, K. (1999). Geometric and information potential of IRS-1C PAN-images. In IEEE International geoscience and remote sensing symposium. IGARSS’99 (Cat. No. 99CH36293), 1 (pp. 428–430).

  • Jain, G. V., & Sharma, S. A. (2019). Spatio-temporal analysis of urban growth in selected small, medium and large Indian cities. Geocarto International, 34(8), 887–908.

    Article  Google Scholar 

  • Jain, S., Laphawan, S., & Singh, P. K. (2013). Tracing the changes in the pattern of urban landscape of Dehradun over last two decades using RS and GIS. nternational Journal of Advanced Remote Sensing and GIS, 2, 351–362.

    Google Scholar 

  • Jayaprasad, P., Narender, B., Arya, A. S., & Ajai. (2002). Extraction of terrain parameters from IRS-1C PAN stereo data using photogrammetric techniques. Current Science (pp. 333–337).

  • Jayaraman, V., Srivastava, S. K., Raju, D. K., & Rao, U. R. (2000). Total solution approach using IRS-1C and IRS-P3 data. IEEE Transactions on Geoscience and Remote Sensing, 38(1), 587–604.

    Article  Google Scholar 

  • Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611–622.

    Google Scholar 

  • Jensen, J. R., & Im, J. (2007). Remote sensing change detection in urban environments. In Geo-spatial technologies in urban environments (731). Springer, Berlin.

  • Jha, R., Singh, V. P., & Vatsa, V. (2008). Analysis of urban development of Haridwar, India, using entropy approach. KSCE Journal of Civil Engineering, 12(4), 281–288.

    Article  Google Scholar 

  • Joseph, G. (1996). Retrospective and prospective of remote sensing in India. Journal of the Indian Society of Remote Sensing, 24(3), 133–144.

    Article  Google Scholar 

  • Kaur, A., Banger, S. K., Jain, N., Kumar, P., & Manchanda, M. L. (2002). Study on environmentally fragile areas of Delhi using remote sensing & GIS technology. Environmental Pollution and Agriculture (p. 455).

  • Kim, J. A., Lee, S. W., Hwang, G. S., Hwang, S. J., Kim, C., & An, K. J. (2016). Effects of streamline complexity on the relationships between urban land use and ecological communities in streams. Paddy and Water Environment, 14(2), 299–312.

    Article  Google Scholar 

  • Kirstein, W., & Netzband, M. (2001). Landscape metrics as a tool for the comparison of different urban regions (p. 35). Regensburger Geographische Schriften: Remote Sensing of Urban Areas/Fernerkundung in urbanen Räumen.

    Google Scholar 

  • Kontoes, C. C., Raptis, V., Lautner, M., & Oberstadler, R. (2000). The potential of kernel classification techniques for land use mapping in urban areas using 5 m-spatial resolution IRS-1C imagery. International Journal of Remote Sensing, 21(16), 3145–3151.

    Article  Google Scholar 

  • Kumar, P., Kumar, S., & Manchanda, M. L. (2004). Satellite stereo data for DEM surfaces and derivatives. Journal of the Indian Society of Remote Sensing, 32(1), 81–90.

    Article  Google Scholar 

  • Kumar, P., Siddiqui, A., Gupta, K., Jain, S., Bharath, B. D., & Maithani, S. (2019). understanding urban environment in northwest Himalaya: Role of geospatial technology. In Remote Sensing of Northwest Himalayan Ecosystems (pp. 403–431). Springer, Singapore.

  • Lata, K. M., Rao, C. S., Prasad, V. K., Badrinath, K. V. S., & Raghavasamy, V. (2001). Measuring urban sprawl: A case study of Hyderabad. GIS Development, 5(12), 26–29.

    Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Maathuis, B. H. P., Mannaerts, I. C., & Khan, N. N. I. (1999). Evaluating urban stormwater drainage using GIS and RS techniques—A case study in Dhaka, Bangladesh. Geocarto International, 14(4), 21–32.

    Article  Google Scholar 

  • Maithani, S. (2010). Cellular automata based model of urban spatial growth. Journal of the Indian Society of Remote Sensing, 38(4), 604–610.

    Article  Google Scholar 

  • Maithani, S. (2015). Neural networks based simulation of land cover scenarios in Doon valley, India. Geocarto International, 30(2), 163–185.

    Google Scholar 

  • Maithani, S., Arora, M. K., & Jain, R. K. (2010). An artificial neural network based approach for urban growth zonation in Dehradun city, India. Geocarto International, 25(8), 663–681.

    Article  Google Scholar 

  • Markandeya, K., & Suryanarayana, G. (2009). Urban floods: Case study of Hyderabad. Disaster & Development: Journal of the National Institute of Disaster Management, 3(2), 121–138.

    Google Scholar 

  • Meinel, G., Lippold, R., & Netzband, M. (1998). The potential use of new high resolution satellite data for urban and regional planning. The International Archives of the Photogrammetry, Remote Sensing, 32(B7), 250–257.

    Google Scholar 

  • Misra, T. (2017). Indian remote sensing sensor system: Current and future perspective. In Proceedings of the National Academy of Sciences, India section A: Physical Sciences 87(4), 473–486.

  • Mondal, M., Sharma, N., Kappas, M., & Garg, P. K. (2015). Critical assessment of land use land cover dynamics using multi-temporal satellite images. Environments, 2(1), 61–90.

    Article  Google Scholar 

  • Mondal, M. S., Sharma, N., Garg, P. K., & Kappas, M. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 259–272.

    Article  Google Scholar 

  • Muralikrishnan, S., Muralikrishna, I. V., Manjunath, A. S., & Rao, K. M. M. (2007). Spatially integrated approach for terrain modelling and analysis for mobile communication applications. Geocarto International, 22(4), 297–307.

    Article  Google Scholar 

  • Nadoushan, M. A., Soffianian, A., & Alebrahim, A. (2012). Predicting urban expansion in Arak metropolitan area using two land change models. World Application Science Journal, 18, 1124–1132.

    Google Scholar 

  • Natesan, U., & Suresh, E. S. M. (2002). Site suitability evaluation for locating sanitary landfills using GIS. Journal of the Indian Society of Remote Sensing, 30(4), 261–264.

    Article  Google Scholar 

  • Navalgund, R. R., Jayaraman, V., Kirankumar, A. S., & Dadhwal, V. K. (2007). Future indian earth observation systems. In 58th International Astronautical Congress (IAC-07-B1. 2.03).

  • Nigam, R. (2000). Application of Remote Sensing and GIS for LULC mapping and change detection in the rural urban fringe area of Enschede city, The Netherlands. International Archives of Photogrammetry and Remote Sensing 33(B7/3; PART 7), 993–998.

  • Pandey, D. (2012). Selection of prospective waste disposal sites for Gondia Municipal Council of Maharashtra, India. International Journal of Life Sciences Biotechnology and Pharma Research, 1(3), 174–181.

    Google Scholar 

  • Pandey, D., Katpatal, Y. B., Kundal, P. P., & Chandrayan, V. R. (2018). Integrated drainage design using GIS technique of Gondia city, Maharashtra, India. International Journal of Recent Scientific Research, 3(C), 24811–24816.

    Google Scholar 

  • Park, J. H., Kim, K. O., & Yang, Y. K. (2001). Image fusion using multiresolution analysis. In IGARSS 2001: scanning the present and resolving the future. Proceedings IEEE 2001 International Geoscience and Remote Sensing Symp. (Cat. No. 01CH37217), 2, (pp. 864–866).

  • Park, J. H., Tateishi, R., Wikantika, K., & Park, J. G. (1999). The potential of high resolution remotely sensed data for urban infrastructure monitoring. In IEEE 1999 international geoscience and remote sensing symposium IGARSS’99 (Cat. No. 99CH36293), 2 (pp. 1137–1139).

  • Parveen, R., & Kulkarni, S. (2019). Urban land use dynamics and change implication by using low-resolution LISS-III imagery. International Journal of Computers and Applications, 1–6.

  • Parveen, R., Kulkarni, S., & Mytri, V. D. (2018). Automated extraction and discrimination of open land areas from IRS-1C LISS-III imagery. International Journal of Computers and Applications, 1–10.

  • Pathak, V., & Dikshit, O. (2004). Per-field classification of Indian urban environment using IRS-1C satellite data. In: 3rd International symposium on new technologies for urban safety of mega cities in Asia, 18–19 October 2004, Agra, India.

  • Pathak, V., & Dikshit, O. (2005). Neuro-textural classification of Indian urban environment. Geocarto International, 20(3), 65–73.

    Article  Google Scholar 

  • Peinsipp-Byma, E., & Roller, W. (1999). Examination of ERS and IRS-1C images for interactive image interpretation. In Sensors, systems, and next-generation satellites III. International Society for Optics and Photonics, (3870) (pp. 663–671).

  • Pesaresi, M. (1999). Textural classification of very high-resolution satellite imagery: Empirical estimation of the interaction between window size and detection accuracy in urban environment. In Proceedings of 1999 International Conference on Image Processing, 1 (pp. 114–118). IEEE.

  • Pesaresi, M., & Benediktsson, J. A. (2000). Classification of urban high-resolution satellite imagery using morphological and neural approaches. In IGARSS 2000. IEEE 2000 international geoscience and remote sensing symposium. taking the pulse of the planet: the role of remote sensing in managing the environment. 7 (pp. 3066–3068).

  • Pundir, S. K., & Garg, R. D. (2020). Development of mapping techniques for off road trafficability to support military operation. Spatial Information Research, 1–12.

  • Rafiee, R., Mahiny, A. S., & Khorasani, N. (2009). Assessment of changes in urban green spaces of Mashad city using satellite data. International Journal of Applied Earth Observation and Geoinformation, 11(6), 431–438.

    Article  Google Scholar 

  • Raghavswamy, V., Pathan, S. K., Mohan, P. R., Bhanderi, R. J,. & Priya, P. (1996). IRS-1C applications for urban planning and development. Current Science, 582–588.

  • Rahman, M. R. (2006). Flood inundation mapping and damage assessment using multi-temporal RADARSAT and IRS-1C LISS-III Image. Asian Journal of Geoinformatics, 6(2), 11–21.

    Google Scholar 

  • Ravindranath S., & Raj, U. (2005). Cultural resources management for ruins of Hampi—World heritage site. Presented in the workshop on ‘Space Inputs to Archaeology’, July 5th 2005, at National Institute of Advanced Studies (NIAS), Bengaluru, India.

  • Rajaram, B., Nagarajan, R., & Khire, M. V. (2001). Synergistic use of orbital satellite image and ground-based information in environmental monitoring of railway alignment construction—A case study. International Journal of Remote Sensing, 22(16), 3187–3201.

    Article  Google Scholar 

  • Ramachandra, T. V., & Kumar, U. (2009a). Geoinformatics for urbanisation and urban sprawl pattern analysis. Geoinformatics for Natural Resource Management, 235–272.

  • Ramachandra, T. V., & Mujumdar, P. P. (2009). Urban floods: Case study of Bangalore. Disaster Development, 3(2), 1–98.

    Google Scholar 

  • Ramachandra, T. V., Sellers, J. M., Bharath, H. A., & Vinay, S. (2019). Modelling urban dynamics along two major industrial corridors in India. Spatial Information Research, 27(1), 37–48.

    Article  Google Scholar 

  • Rao, D. P., Gautam, N. C., Nagaraja, R., & Mohan, P.R. (1996a). IRS-1C applications in land use mapping and planning. Current Science, 575–581.

  • Rao, D. P., Navalgund, R. R., & Murthy, Y. V. N. (1996b). Cadastral applications using IRS-1C data–Some case studies. Current Science, 624–628.

  • Rao, K. V., Kamini J., Ramesh B., & Raghavaswamy V. (2013). Achievements and applications for urban planning using data from IRS Satellites. Bulletin of the National Natural Resources Management System, NNRMS (B)-37, 123–130.

  • Rao, M., Krishnamurthy, J., Raj, U., Patan, S. K., Ragavaswamy, V., & Jayaraman, V. (1998). Classification of high resolution satellite imagery—The experience from IRS-1C/1D. In IAF, international astronautical congress, 49th, Melbourne, Australia.

  • Rao, Y. S., Rao, K. S., Venkataraman, G., Khare, M., & Reddy, C. D. (2003). Comparison of DEMs derived from INSAR and optical stereo techniques. In Proceeding of FRINGE workshop, Frascati, Italy.

  • Rashed, T., & Jürgens, C. eds. (2010). Remote sensing of urban and suburban areas (Vol. 10). Springer, Berlin.

  • Rashed, T., Weeks, J. R., Gadalla, M. S., & Hill, A. G. (2001). Revealing the anatomy of cities through spectral mixture analysis of multispectral satellite imagery: a case study of the Greater Cairo region, Egypt. Geocarto International, 16(4), 7–18.

    Article  Google Scholar 

  • Rashed, T., Weeks, J. R., Stow, D., & Fugate, D. (2005). Measuring temporal compositions of urban morphology through spectral mixture analysis: Toward a soft approach to change analysis in crowded cities. International Journal of Remote Sensing, 26(4), 699–718.

    Article  Google Scholar 

  • Revision of World Urbanization Prospects. (2018). Produced by the Population Division of the UN Department of Economic and Social Affairs (UN DESA).

  • Richter, R., Weingart, U., Wever, T., & Kahny, U. (2006). Urban land use data for the telecommunications industry. Photogrammetrie Fernerkundung Geoinformation, 2006(4), 297.

    Google Scholar 

  • Ridd, M. K. (1995). Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, 16(12), 2165–2185.

    Article  Google Scholar 

  • Rokade, V. M. (2019). Geoscientific investigations for searching suitable solid waste disposal site using Remote Sensing and GIS. International Journal of Economic and Environmental Geology, 27–35.

  • Samudraiah, D. R. M. (2013). Indian Electro-optical payloads for earth observation. Bulletin of the National Natural Resources Management System, NNRMS (B)-37, 19–26.

  • Sanjeevi, S., Vani, K., & Lakshmi, K. (2001). Comparison of conventional and wavelet transform techniques for fusion of IRS-1C LISS-III and PAN images. In 22nd Asian conference on remote sensing (pp. 65–85).

  • Saraf, A. K. (1999). IRS-1C-LISS-III & PAN data fusion: an approach to improve remote sensing based mapping techniques. International Journal of Remote Sensing, 20(10), 1929–1934.

    Article  Google Scholar 

  • Sebastian, M., Jayaraman, V., & Chandrasekhar, M. G. (1998). Facilities management using remote sensing data in a GIS environment. Acta Astronautica, 43(9–10), 487–491.

    Article  Google Scholar 

  • Seker, D. Z., Kaya, S., Musaoglu, N., Demirel, H., Tanik, A., & Sertel, E. (2010). Spatial analyses for environmental impacts of landfill areas. In Survival and sustainability (pp. 691–697). Springer, Berlin.

  • Shalan, M. A., Arora, M. K., & Ghosh, S. K. (2003). An evaluation of fuzzy classifications from IRS-1C LISS-III imagery: A case study. International Journal of Remote Sensing, 24(15), 3179–3186.

    Article  Google Scholar 

  • Shukla, S., Gedam, S., & Khire, M. V. (2020). Implications of demographic changes and land transformations on surface water quality of rural and urban sub-basins of Upper Bhima River basin, Maharashtra, India. Environment, Development and Sustainability, 22(1), 129–171.

    Article  Google Scholar 

  • Sliuzas, R., Kuffer, M., & Masser, I. (2010). The spatial and temporal nature of urban objects. In Remote sensing of urban and suburban areas. Springer, Dordrecht (pp. 67–84).

  • Smith, G. M., & Fuller, R. M. (2001). An integrated approach to land cover classification: an example in the Island of Jersey. International Journal of Remote Sensing, 22(16), 3123–3142.

    Article  Google Scholar 

  • Srivastava, P. K., Krishna, B. G., & Majumder, K. L. (1996). Cartography and terrain mapping using IRS-1C data. Current Science, 562–567.

  • Steinnocher, K., Ries, C., Köstl, M., Ehrlich, D., & Lavalle, C. (1999). Monitoring urban dynamics by earth observation–The Vienna case study (pp. 502–509). Heidelberg: Angewandte Geographische Informationsverarbeitung XI, Wichmann Verlag.

    Google Scholar 

  • Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation Geoinformation, 5(1), 29–39.

    Article  Google Scholar 

  • Sundaram, A. M. (2011). Urban green-cover and the environmental performance of Chennai city. Environment, Development and Sustainability, 13(1), 107–119.

    Article  Google Scholar 

  • Suribabu, C. R., & Bhaskar, J. (2015). Evaluation of urban growth effects on surface runoff using SCS-CN method and Green-Ampt infiltration model. Earth Science Informatics, 8(3), 609–626.

    Article  Google Scholar 

  • Talukdar, K. K. (1999). Tele-geoinformation service for sustainable urban management: A satellite-based observation approach for the 21st century. In Space and the Global Village: Tele-services for the 21st Century, Springer, Dordrecht (pp. 149–155).

  • Tapiador, F. J., & Casanova, J. L. (2003). Land use mapping methodology using remote sensing for the regional planning directives in Segovia, Spain. Landscape and Urban Planning, 62(2), 103–115.

    Article  Google Scholar 

  • Teggi, S., Cecchi, R., & Serafini, F. (2003). TM and IRS-1C PAN data fusion using multiresolution decomposition methods based on the ‘a tròus’ algorithm. International Journal of Remote Sensing, 24(6), 1287–1301.

    Article  Google Scholar 

  • Topan, H., Maktav, D., Jacobsen, K., & Buyuksalih, G. (2009). Information content of optical satellite images for topographic mapping. International Journal of Remote Sensing, 30(7), 1819–1827.

    Article  Google Scholar 

  • Tripathi, N. K., & Singh, P. (2000). Integrated GIS and remote sensing approach to map pollution in upper lake, Bhopal, India. Geocarto International, 15(4), 51–58.

    Article  Google Scholar 

  • Turker, M., & Asik, O. (2005). Land use change detection at the rural-urban fringe using multi-sensor data in Ankara, Turkey. International Journal of Geoinformatics, 1(3), 27–36.

    Google Scholar 

  • Uniyal, A., Shah, P. N., Mohan, R., & Rao, S. (2016). Image processing and GIS techniques applied to high resolution satellite data for lineament mapping of thermal power plant site in Allahabad district, UP, India. Geocarto International, 31(9), 956–965.

    Article  Google Scholar 

  • Weeks, J. R., Larson, D., & Fugate, D. (2005). Patterns of urban land use as assessed by satellite imagery: An application to Cairo, Egypt. In Population, Land Use, and Environment: Research Directions (pp. 265–286).

  • Wurm, M., Taubenböck, H., & Dech, S. (2010). Quantification of urban structure on building block level utilizing multisensoral remote sensing data. Earth Resources and Environmental Remote Sensing/GIS Applications, International Society for Optics and Photonics, 7831, 78310H.

    Article  Google Scholar 

  • Zavala, P., & Chuvieco, E. (2003). Analysis of seismic vulnerability using remote sensing and GIS techniques. International Journal of Emergency Management, 1(4), 319–331.

    Article  Google Scholar 

  • Zhang, L., Feiner, J., Louy, O., Gruen, A., & Schmid, W. A. (2002). Photo-textured digital terrain models as a basis for regional and local planning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 30, 1682–1777.

    Google Scholar 

  • Zoleikani, R., Zoej, M. V., & Mokhtarzadeh, M. (2017). Comparison of pixel and object oriented based classification of hyperspectral pansharpened images. Journal of the Indian Society of Remote Sensing, 45(1), 25–33.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, National Remote Sensing Centre (NRSC), Hyderabad, India; Director, Indian Institute of Remote Sensing (IIRS), Dehradun, India; Dr. Y.V.N. Krishna Murthy, former Director, NRSC and IIRS and presently, Senior Professor, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, India; Sh. Uday Raj, former Chief General Manager, Regional Centres, NRSC and Dr. K. Ganesha Raj, General Manager, Regional Remote Sensing Centre-South, Bengaluru, India, for their guidance and encouragements in carrying out various projects on geospatial technology and applications for societal benefits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Rao, K.V., Ravindranath, S. et al. A Review of IRS-1C Applications in Urban and Regional Studies, and Infrastructure Planning. J Indian Soc Remote Sens 49, 161–177 (2021). https://doi.org/10.1007/s12524-020-01283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01283-5

Keywords

Profiles

  1. Pramod Kumar
  2. Sandeep Maithani