Skip to main content

Advertisement

Log in

Assessing the Mineral Alteration in Ambaji–Deri Region (Northwestern India) Using Hyperspectral Remote Sensing

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

We used Airborne Visible Infrared Imaging Spectrometer-Next Generation data for mapping possible mineral alterations, which aid in mineral exploration over larger areas. The data were subjected to various advanced processing techniques like Minimum Noise Fraction, Pixel Purity Index, N-Dimensional visualization and Spectral angle mapper classification. End-member spectra were matched with those of the minerals as available in the United States Geological Survey Spectral Library. In the present study, the Ambaji–Deri area of northwestern India was mapped for mineral alterations. The area has thick forest cover along with rugged topography, which warranted the use of hyperspectral remote sensing approach. The minerals such as calcite, muscovite and chlorite have been mapped, which are showing a good correlation with the ground geological records, barring epidote, whose distribution is scattered. We attribute the possible reason to be the spectral similarities between epidote and chlorite, which makes them difficult to differentiate only on the basis of the present hyperspectral study. The hyperspectral technique, as illustrated, provides powerful tool for mapping mineral alteration to mineral deposits. This enables scrutiny of a wider area of interest to being narrowed down for first-hand field investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams, M. (2000). The advanced spaceborne thermal emission and re ection radiometer ( ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing, 21(5), 847–859.

    Article  Google Scholar 

  • Amato, U., Cavalli, R. M., Palombo, A., Pignatti, S., & Santini, F. (2009). Experimental approach to the selection of the components in the minimum noise fraction. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2008.2002953

    Article  Google Scholar 

  • Bharti, R., Kalimuthu, R., & Ramakrishnan, D. (2015). Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat India. Advances in Space Research, 56(8), 1613–1626. https://doi.org/10.1016/j.asr.2015.07.015

    Article  Google Scholar 

  • Bharti, R., & Ramakrishnan, D. (2014).In Geoscience and remote sensing symposium (IGARSS), 2014 IEEE international, (pp 2902–2905).

  • Bhattacharya, S., Majumdar, T. J., Rajawat, A. S., Panigrahy, M. K., & Das, P. R. (2012). Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. International Journal of Remote Sensing, 33(17), 5438–5450. https://doi.org/10.1080/01431161.2012.661094

    Article  Google Scholar 

  • Boardman, J. W. (1994). Geometric mixture analysis of imaging spectrometry data. In Geoscience and remote sensing symposium, 1994. IGARSS ’94. Surface and atmospheric remote sensing: technologies, data analysis and interpretation., international. https://doi.org/10.1109/IGARSS.1994.399740.

  • Boardman, J. W., Kruse, F. A., & Green, R. O. (1993). Mapping target. Jet Propulsion, 23, 23–26.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002). Mineral imaging with Landsat Thermatic mapper data for hydrothermal alteration mapping in heavily vegetated terrane. International Journal of Remote Sensing, 23(22), 4827–4852. https://doi.org/10.1080/01431160110115014

    Article  Google Scholar 

  • Cŕosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240. https://doi.org/10.1080/0143116031000152291

    Article  Google Scholar 

  • Dalton, J. B., Bove, D. J., Mladinich, C. S., & Rockwell, B. W. (2004). Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem. Remote Sensing of Environment, 89(4), 455–466. https://doi.org/10.1016/j.rse.2003.11.011

    Article  Google Scholar 

  • Deb, M. (1979). Polymetamorphism of ores in Precambrian stratiform massive sulfide deposits at Ambaji-Deri Western India. Mineralium Deposita. https://doi.org/10.1007/BF00201865

    Article  Google Scholar 

  • Deb, M. (1980). Genesis and metamorphism of two stratiform massive sulfide deposits at Ambaji and Deri in the Precambrian of Western India. Economic Geology. https://doi.org/10.2113/gsecongeo.75.4.572

    Article  Google Scholar 

  • Deb, M., Thorpe, R. I., Krstic, D., Corfu, F., & Davis, D. W. (2001). Zircon U–Pb and galena Pb isotope evidence for an approximate 1. 0 Ga terrane constituting the western margin of the Aravalli–Delhi orogenic belt, northwestern India. Precambrian Research, 108, 195–213.

    Article  Google Scholar 

  • Gaffey, S. J. (1987). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals. Journal of Geophysical Research. https://doi.org/10.1029/JB092iB02p01429

    Article  Google Scholar 

  • Galley, A. G. (1993). Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulphide districts. Journal of Geochemical Exploration. https://doi.org/10.1016/0375-6742(93)90004-6

    Article  Google Scholar 

  • Galley, A. G., Hannington, M. D., & Jonasson, I. R. (2007). Volcanogenic massive sulphide deposits. Special Publication, 5, 141–161.

    Google Scholar 

  • Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113(1), S5–S16. https://doi.org/10.1016/j.rse.2007.12.014

    Article  Google Scholar 

  • González, C., Resano, J., Mozos, D., Plaza, A., & Valencia, D. (2010). FPGA Implementation of the pixel purity index algorithm for remotely sensed hyperspectral image analysis. Eurasip Journal on Advances in Signal Processing. https://doi.org/10.1155/2010/969806

    Article  Google Scholar 

  • Graham, G. E., Kokaly, R. F., Kelley, K. D., Hoefen, T. M., Johnson, M. R., & Hubbard, B. E. (2017). Airborne hyperspectral surveying as a tool for mineral exploration at high latitudes: a pilot study over porphyry Cu deposits, eastern Alaska Range, Alaska. In 14th SGA Biennial Meeting (Vol. 3, pp. 1077–1080).

  • Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A Transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74. https://doi.org/10.1109/36.3001

    Article  Google Scholar 

  • GSI. (1967). Geological survey of India geological mapping in parts of Chamba District. Unpublished.

  • GSI. (2012a). Geology and mineral resources of Gujarat. Unpublished.

  • GSI. (2012b). Use of hyperspectral remote sensing data for the search of mineralised provinces/areas in Precambrian Terrain. Unpublished.

  • Gupta S N, Arora Y K, Mathur R K, Iqbaludin p, Sahai T N, & Sharma S B. (1980). Lithostratigraphic map of Aravalli region. Kolkata.

  • Harraden, C. L., McNulty, B. A., Gregory, M. J., & Lang, J. R. (2013). Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna Alaska. Economic Geology, 108(3), 483–494. https://doi.org/10.2113/econgeo.108.3.483

    Article  Google Scholar 

  • Heron, A. M., & Ghosh, P. K. (1938). Geology of Palanpur, Danta and parts of Idar states. Record of Geological Survey of India.

  • Herzig, P. M., & Hannington, M. D. (1995). Polymetallic massive sulfides at the modem seafloor A review. Ore Geology Reviews, 10(10), 95–115.

    Article  Google Scholar 

  • Hunt, G. R. (1979). Near-infrared (1.3–2.4 μm) spectra of alteration minerals—Potential for use in remote sensing. Geophysics, 44(12), 197–198.

    Article  Google Scholar 

  • Incorporated Research Systems. (2004). ENVI User’s guide, (September), (pp. 1–1150).

  • Khanna, S., Santos, M. J., Ustin, S. L., Shapiro, K., Haverkamp, P. J., & Lay, M. (2018). Comparing the potential of multispectral and hyperspectral data for monitoring oil spill impact. Sensors. https://doi.org/10.3390/s18020558

    Article  Google Scholar 

  • Kokaly, R. F., Hoefen, T. M., Graham, G. E., Kelley, K. D., Johnson, M. R., Hubbard, B. E., et al. (2016). Mineral information at micron to kilometer scales: Laboratory, field, and remote sensing imaging spectrometer data from the orange hill porphyry copper deposit, Alaska, USA. In International geoscience and remote sensing symposium (IGARSS), 2016Nov,(pp. 5418–5421).https://doi.org/10.1109/IGARSS.2016.7730411

  • Krishna Mohan, B., & Porwal, A. (2015). Hyperspectral image processing and analysis. Current Science, 108(5), 833–841.

    Google Scholar 

  • Kruse, F. A. (1988). Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sensing of Environment. https://doi.org/10.1016/0034-4257(88)90004-1

    Article  Google Scholar 

  • Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing System (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145–163.

    Article  Google Scholar 

  • Laakso, K., Middleton, M., Heinig, T., Bärs, R., & Lintinen, P. (2018). Assessing the ability to combine hyperspectral imaging (HSI) data with mineral liberation analyzer (MLA) data to characterize phosphate rocks. International Journal of Applied Earth Observation and Geoinformation, 69, 1–12. https://doi.org/10.1016/j.jag.2018.02.018

    Article  Google Scholar 

  • Laakso, K., Peter, J. M., Rivard, B., & White, H. P. (2016). Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn–Cu–Pb–Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Economic Geology. https://doi.org/10.2113/econgeo.111.5.1223

    Article  Google Scholar 

  • Laakso, K., Rivard, B., Peter, J. M., White, H. P., Maloley, M., Harris, J., & Rogge, D. (2015). Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian arctic: Recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake Deposit Area Nunavut. Economic Geology. https://doi.org/10.2113/econgeo.110.4.925

    Article  Google Scholar 

  • Large, R. R. (1992). Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models. Economic Geology. https://doi.org/10.2113/gsecongeo.87.3.471

    Article  Google Scholar 

  • Laukamp, C., Cudahy, T., Thomas, M., Jones, M., Cleverley, J. S., & Oliver, N. H. S. (2011). Hydrothermal mineral alteration patterns in the Mount Isa Inlier revealed by airborne hyperspectral data. Australian Journal of Earth Sciences, 58(8), 917–936. https://doi.org/10.1080/08120099.2011.571287

    Article  Google Scholar 

  • Li, Z., Yang, R., Dang, F., Du, P., Zhang, X., Tan, B., et al. (2012). A review on the geological applications of hyperspectral remote sensing technology. Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. https://doi.org/10.1109/WHISPERS.2012.6874235

    Article  Google Scholar 

  • Luo, G., Chen, G., Tian, L., Qin, K., & Qian, S. E. (2016). Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing, 42(2), 106–116. https://doi.org/10.1080/07038992.2016.1160772

    Article  Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the zagros magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186. https://doi.org/10.1130/GES00044.1

    Article  Google Scholar 

  • Mauger, A. J., Keeling, J. L., & Huntington, J. F. (2007). Alteration mapping of the Tarcoola Goldfield (South Australia) using a suite of hyperspectral methods. Applied Earth Science, 116(1), 2–12. https://doi.org/10.1179/174327507X167028

    Article  Google Scholar 

  • Mishra, B. (2015). Chapter 22 precambrian metallic mineralization in India. Geological Society, London, Memoirs, 43(1), 327–337.

    Article  Google Scholar 

  • Neal, L. C., Wilkinson, J. J., Mason, P. J., & Chang, Z. (2018). Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. Journal of Geochemical Exploration, 184, 179–198. https://doi.org/10.1016/j.gexplo.2017.10.019

    Article  Google Scholar 

  • Nidamanuri, R. R., & Ramiya, A. M. (2013). Spectral identification of materials by reflectance spectral library search. Geocarto International, 29(6), 609–624. https://doi.org/10.1080/10106049.2013.821175

    Article  Google Scholar 

  • Nidamanuri, R. R., & Ramiya, A. M. (2014). Spectral identification of materials by reflectance spectral library search. Geocarto International. https://doi.org/10.1080/10106049.2013.821175

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Tectonostratigraphy and base-metal mineralization controls, Aravalli province (western India): New interpretations from geophysical data analysis. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2005.10.003

    Article  Google Scholar 

  • Pour, A. B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar volcanic belt Iran. Advances in Space Research, 49(4), 753–769. https://doi.org/10.1016/j.asr.2011.11.028

    Article  Google Scholar 

  • Pour, A. B., & Hashim, M. (2015). Structural mapping using PALSAR data in the central gold belt peninsular Malaysia. Ore Geology Reviews, 64(1), 13–22. https://doi.org/10.1016/j.oregeorev.2014.06.011

    Article  Google Scholar 

  • Pour, A. B., Hashim, M., Hong, J. K., & Park, Y. (2017). Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land Antarctic Peninsula. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2017.07.018

    Article  Google Scholar 

  • Ramakrishnan, D., & Bharti, R. (2016). Hyperspectral remote sensing and geological applications. Current Science, 108, 879–891.

    Google Scholar 

  • Ross, P. S., & Mercier-Langevin, P. (2014). Igneous rock associations 14. The volcanic setting of VMS and SMS deposits: A review. Geoscience Canada. https://doi.org/10.12789/geocanj.2014.41.045

    Article  Google Scholar 

  • Sabins, F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4), 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  • Shaw, G. A., & Burke, H. K. (2003). Spectral imaging for remote sensing. Lincoln Laboratory Journal, 14(1), 3–28.

    Google Scholar 

  • Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E., Breit, G. N., Kruse, F. A., et al. (2014). Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy. Economic Geology. https://doi.org/10.2113/econgeo.109.5.1179

    Article  Google Scholar 

  • Taylor, P., Gens, R., & Genderen, J. L. V. A. N. (2007). Review Article SAR interferometry—issues, techniques, applications. International Journal of Remote Sensing, 17, 37–41.

    Google Scholar 

  • Tiwary, A., & Deb, M. (1997). Geochemistry of hydrothermal alteration at the Deri massive sulphide deposit, Sirohi district, Rajasthan. NW India. Journal of Geochemical, 59(59), 99–121.

    Google Scholar 

  • van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., et al. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  • Wu, X., Huang, B., Plaza, A., Li, Y., & Wu, C. (2014). Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs. IEEE Geoscience and Remote Sensing Letters, 11(5), 955–959. https://doi.org/10.1109/LGRS.2013.2283214

    Article  Google Scholar 

Download references

Acknowledgement

SPP would like to thank DG and Director ISR for encouragement and support. The paper forms part of ongoing AMBAJI research project of Government of Gujarat. We would like to thank ISRO-SAC for providing the AVIRIS-NG data for research purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Prizomwala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samani, P., Prizomwala, S.P. & Rajawat, A.S. Assessing the Mineral Alteration in Ambaji–Deri Region (Northwestern India) Using Hyperspectral Remote Sensing. J Indian Soc Remote Sens 49, 249–257 (2021). https://doi.org/10.1007/s12524-020-01208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01208-2

Keywords

Navigation