Skip to main content

Advertisement

Log in

Modeling Seasonal Variation in Urban Weather in Sub-Tropical Region of Delhi

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Complexity and heterogeneity of urban areas lead to difficulty in urban weather simulations and climate modeling. Diversity and size of urban areas necessitate to downscale global climate models to urban scale (~ hundreds of meters) and to enhance urban parameterization in the models to realistically simulate urban weather conditions. Hence, in this study, a methodology has been developed to generate multi-class urban land use land cover (LULC) by employing Resourcesat-2 LISS IV data. Weather Research and Forecast (WRF) model which is also a mesoscale numerical weather prediction and regional climate model was utilized to downscale the meteorological parameters up to 0.5 km grid resolution. Multi-class urban LULC prepared with improved urban parameters and updated Land Surface Parameters (LSPs) was ingested in model for Delhi to evaluate the model performance in three dominant seasons, i.e., summer, monsoon and winter. Evaluation of model performance with ground observation data revealed that multi-class urban LULC along with updated LSPs provided improved RMSE values of 2.31° C, 1.79 m/s and 0.94 mbar as compared to ingestion of multi-class urban LULC only (RMSE values of 3.42° C, 3.72 m/s and 1.58 mbar) for temperature at 2 m, wind speed and surface pressure, respectively. Temperature is found to be highest in summer season (38.58° C) and lowest in winter season while relative humidity is highest in monsoon season (~ 88%) and lowest in summer season (~ 30%). The study highlights the importance of ingestion of updated LSPs along with updated multi-class urban LULC for enhanced model performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anon. (2012). Epidemiological Study on Effect of Air Pollution on Human Health (Adults) in Delhi. Retrieved August 10, 2020 from https://cpcb.nic.in/uploads/healthreports/Epidemiological_study_Adult_Peerreviewed-2012.pdf

  • Anon., N.D. Chapter 1. Introduction and design of the study. (https://shodhganga.inflibnet.ac.in/bitstream/10603/133632/7/07_chapter%25201.pdf). Last accessed: 08/10/2020.

  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the Urban Heat Island. International Journal of Climatology, 23, 1–26.

    Article  Google Scholar 

  • Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., et al. (2015). Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geo-Information, 4(1), 199–219. https://doi.org/10.3390/ijgi4010199.

    Article  Google Scholar 

  • Bhati, S., & Mohan, M. (2018). WRF-urban canopy model evaluation for the assessment of heat island and thermal comfort over an urban airshed in India under varying land use/land cover conditions. Geoscience Letters, 5, 27. https://doi.org/10.1186/s40562-018-0126-7.

    Article  Google Scholar 

  • Best, M. J. (2005). Representing urban areas within operational numerical weather prediction models. Boundary-Layer Meteorology, 114, 91–109.

    Article  Google Scholar 

  • Bhavana, M., Gupta, Kshama, Pal P. K., (2018a). Improved urban parameters for urban micro-climate modelling using WRF model. Centre for Space Science and Technology Education in Asia-Pacific, Dehradun (Unpublished Thesis).

  • Bhavana, M., Gupta, K., Pal P. K., (2018b), Urban micro climate modelling using different urban physics schemes and high resolution LULC with WRF Model. ISPRS Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 491–498. https://doi.org/10.5194/isprs-archives-XLII-5-491-2018.

  • Bhavana, M., Gupta, Kshama, Pal, P. K., Kumar, A. S., & Gummapu, J. (2018c). Evaluation of High Resolution Urban LULC for Seasonal Forecasts of Urban Climate using WRF Model. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV–5, 303–310. https://doi.org/10.5194/isprs-annals-IV-5-303-2018.

  • Chen, F., Kusaka, H., Tewari, M., Bao, J.-W., Harakuchi, H. (2004). Utilizing the coupled WRF/LSM/urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area. Preprints, Fifth Symposium on the Urban Environment, Vancouver, BC, Canada, American Meteorological Society, pp 9–11. Available online at https://ams.confex.com/ams.pdfpapers/79765.pdf.

  • Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., et al. (2011). The integrated WRF/urban modeling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31, 273–288.

    Article  Google Scholar 

  • Dastidar Payel Ghosh, Gupta Kshama, Thakur Praveen K., Kumar Pramod, Aggarwal S P, 2017, A Study of the Urban Boundary layer using different Urban Physics options coupled with High Resolution WRF Model, Internatonal Conference on Urban Geoinformatics, Teri University, Delhi, 22–23 February, 2017.

  • DESA/UN-WUP. (2018). World Urbanization Prospects: The 2018 Revision. In Department of Economic and Social Affairs. Retrieved from https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf

  • Gharai, B., Rao, P. V. N., & Dutt, C. B. S. (2018). Mesoscale model compatible IRS-P6 AWiFS-derived land use/land cover of Indian region. Current Science, 115(12), 2301–2306.

    Article  Google Scholar 

  • Gurjar, B. R., Jain, A., Sharma, A., Agarwal, A., Gupta, P., Nagpure, A. S., et al. (2010). Human health risks in megacities due to air pollution. Atmospheric Environment, 44(36), 4606–4613. https://doi.org/10.1016/J.ATMOSENV.2010.08.011.

    Article  Google Scholar 

  • Howard, L. (1820). The Climate of London. Retrieved from https://www.urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf. Last accessed on August 10, 2020

  • Jensen, J. R. (1986). Introductory digital image processing: a remote sensing perspective. PTR, USA: Prentice Hall.

    Google Scholar 

  • Karri, Srinivasarao, Gharai, Biswadip , Sai Krishna, S. V. S., Rao, P. V. N. (2016). Impact of AWiFS derived land use land cover on simulation of heavy rainfall, Proceedings of the SPIE, Volume 9882, id. 98821M 7 pp. https://doi.org/10.1117/12.2223627

  • Kusaka, H., Chen, F., Tewari, M., Dudhia, J., Gill, D. O., Duda, M. G., Wang, W., Miya, Y. (2012). Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: an inter-comparison study between the Urban Canopy Model and slab model. Journal of the Meteorological Society of Japan. Ser. II, 90B, 33–45.https://doi.org/10.2151/jmsj.2012-B03.

  • Kusaka, H., & Kimura, F. (2004). Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat Island simulation for an idealized case. Journal of the Meteorological Society of Japan, 82(1), 67–80. https://doi.org/10.2151/jmsj.82.67.

    Article  Google Scholar 

  • Lalitha, A., Gupta, K., & Rao, M. J. (2018). Multi-City Urban Weather Simulation using WRF Model. Andhra University (Unpublished Thesis).

  • Lemonsu, A., & Masson, V. (2002). Simulation of a summer urban Breeze over Paris. Boundary-Layer Meteorology, 104, 463–490.

    Article  Google Scholar 

  • Lin, C., Su, C., Kusaka, H., Akimoto, Y., Sheng, Y., Huang, J., et al. (2016). Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric Chemistry and Physics, 16, 1809–1822.

    Article  Google Scholar 

  • Liu, Y., Chen, F., Warner, T., & Basara, J. (2006). Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma city area during the Joint Urban 2003 Field Project. Journal of Applied Meteorology, 45, 912–929.

    Article  Google Scholar 

  • Martilli, A., Clappier, A., & Rotach, M. W. (2002). Mesoscale Models. Boundary-Layer Meteorology, 104, 261–304. https://doi.org/10.1023/A:1016099921195.

    Article  Google Scholar 

  • Mohan, M., Kikegawa, Y., Gurjar, B. R., Bhati, S., Kandya, A., & Ogawa, K. (2009). Assessment of urban heat island intensities over Delhi. The Seventh International Conference on Urban Climate, Yokohama, Japan, (July), 3–6.

  • Mohan, M., & Bhati, S. (2011). Analysis of WRF Model performance over Subtropical Region of Delhi, India. Advances in Meteorology, 1–13. https://doi.org/10.1155/2011/621235.

  • Mohan, M., Kandya, A., & Battiprolu, A. (2011). Urban heat Island effect over National capital region of India: a study using the temperature trends Journal of Environmental Protection, 02(04), 465–472. https://doi.org/10.4236/jep.2011.24054.

    Article  Google Scholar 

  • Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and Buildings, 11(1–3), 103–113. https://doi.org/10.1016/0378-7788(88)90026-6.

    Article  Google Scholar 

  • Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., & Grimmond, C. S. B. (2008). An urban parameterization for a global climate model: 1. Formulation & evaluation for two cities. Journal of Applied Meteorology and Climatology, 47, 1038–1060. https://doi.org/10.1175/2007JAMC1597.1.

    Article  Google Scholar 

  • Ravindranath, M., Raghavendra, A., & Bohra, A. K. (2010). Experiment on utilization of AWiFs LULC data in WRF mesoscale model, NMRF/RR/1/2010. India: National Centre for Medium Range Weather Forecasting. https://www.ncmrwf.gov.in/AWiFS_report.pdf. Accessed 23 Aug 2020.

    Google Scholar 

  • Salamanca, F., & Martilli, A. (2010). A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations-part II. Validation with one dimension off-line simulations. Theoretical and Applied Climatology, 99(3–4), 345–356. https://doi.org/10.1007/s00704-009-0143-8.

  • Salamanca, F., Zhang, Y., Barlage, M., Chen, F., Mahalov, A., & Miao, S. (2018). Evaluation of the WRF-urban modeling system coupled to Noah and Noah-MP land surface models over a semiarid urban environment. Journal of Geophysical Research: Atmospheres, 123, 2387–2408. https://doi.org/10.1002/2018JD028377.

    Article  Google Scholar 

  • Sharma Gaurav, Gupta Kshama, Thakur Praveen, Patel, Pratiman, Kumar Pramod & Aggarwal S. P., (2015). Wind Simulation in urban area using open source software, Second National Conference on Free and Open Source Software for Geospatial community on Open source Geospatial Tools in Climate Change Research and Natural Research Management’ held at IIRS Dehradun, June 9–10 , 2015.

  • Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1.

    Article  Google Scholar 

  • Taha, H. (1999). Modifying a mesoscale meteorological model to better incorporate urban heat storage: a bulk-parameterization approach. Journal of Applied Meteorology, 38, 466–473.

    Article  Google Scholar 

  • Taha H, & Bornstein R. (1999). Urbanization of meteorological models: implications on simulated heat islands and air quality. International Congress of Biometeorology and International Conference on Urban Climatology (ICB-ICUC) Conference, Sydney, Australia, 8–12, November 1999.

  • Tewari Mukul, Chen Fei, Kusaka Hiroyuki, Miao Shiguang. (2007) Coupled WRF/Unified Noah/Urban-Canopy Modeling System. Last accessed on August 10, 2020 fromhttps://ral.ucar.edu/sites/default/files/public/product-tool/WRF-LSM-Urban.pdf.

  • Unnikrishnan, C. K., Gharai, B., Mohandas, S., Mamgain, A., Rajagopal, E. N., Gopal, R. I., et al. (2016). Recent change on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmospheric Science Letters, https://doi.org/10.1002/asl.658.

  • United Nations. (2018). World Urbanization Prospects: The 2018 Revision, Key Facts, 2. https://www.ST/ESA/SER.A/366.

  • Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.-L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1), 261–274. https://doi.org/10.1080/0143116031000116417.

    Article  Google Scholar 

  • Wendall Cox. (2011). The Evolving Urban Form: Delhi | Newgeography.com. Retrieved May 19, 2019, from https://www.newgeography.com/content/002545-the-evolving-urban-form-delhi.

Download references

Acknowledgements

Authors are grateful to Indian Institute of Remote Sensing, Dehradun (a unit of Indian Space Research Organization), and Centre for Space Science and Technology Education in Asia–Pacific (CSSTE-AP), Dehradun, for financial and logistics support. They are also grateful to Regional Meteorological Centre, Indian Meteorological Department, New Delhi, and Indian Agricultural Research Institute, New Delhi, for providing surface observation data for validation. Authors wish to thank reviewers for their valuable time and critical suggestions for improvement in manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshama Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Pushplata, Lalitha, A. et al. Modeling Seasonal Variation in Urban Weather in Sub-Tropical Region of Delhi. J Indian Soc Remote Sens 49, 193–213 (2021). https://doi.org/10.1007/s12524-020-01198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01198-1

Keywords

Navigation