Watersheds Characteristics and Prioritization Using Morphometric Parameters and Fuzzy Analytical Hierarchal Process (FAHP): A Part of Lower Subansiri Sub-Basin

Abstract

Globally, the study of watersheds plays an important role for any kind of developmental activities and sustainable management. The present study lies in tectonically active regions of Northeast India, which needs to be given proper consideration prior to taking up any kind of developmental activity. The main objective of the research is to understand the behaviors of the watersheds in response to the neo-tectonic and to prioritize the watersheds using morphometric parameters and fuzzy-AHP. For the present studies, nine watersheds have been extracted from the Cartosat DEM using ArcGIS 10 software. Sixteen morphometric parameters indicating neo-tectonic domain have been considered for the study of prioritization of the watersheds. Firstly, the deviation of linear regression in Horton’s law of drainage order and drainage length has been discussed which indicates that all the watersheds are influenced by endogenic force, which induces the changes of the landform. Based on the FAHP weighted value, the prioritization of watershed is classified into five classes, namely very low (< 0.044), low (0.0466–0.0645), medium (0.0645–0.1112), high (0.1112–0.1818), and very high (0.1818–0.2691). The watersheds A and D are assigned to highest rank as they were within the 0.182 and 0.270 weighted values. And watershed E is lowest among the nine watersheds with weighted value of < 0.044, respectively. Finally, Kappa method has been used to validate the results and observed that 47% and 30% of the collected data fall within very high and high prioritization zones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agarwal, C. S. (1998). Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U. P. Journal of the Indian Society of Remote Sensing,26, 169–175.

    Google Scholar 

  2. Ali, U., & Ali, S. A. (2014). Analysis of drainage morphometric and watershed prioritization of Romushi-Sasar catchment, Kashmir Valley, India using remote sensing and GIS technology. International Journal of Advanced Research,2(12), 5–23.

    Google Scholar 

  3. Argyroiu, Athanasios (2012). A methodology for the rapid identification of neotectonic features using geographical information systems and remote sensing: A case study from Western Crete, Greece. Ph.D. thesis. School of earth and environmental sciences, University of Portsmouth, United Kingdom.

  4. Awasthi, K. D., Sitaula, B. K., Singh, R. B. R., & Bajacharaya, M. (2002). Land-use change in two Nepalese watersheds: GIS and geomorphometric analysis. Land Degradation and Development,13, 495–513.

    Google Scholar 

  5. Bats, R. L., & Jackson, J. (1987). Glossary of geology: Alexandria (p. 788). VA: American Geological Institute.

    Google Scholar 

  6. Bhatt, C. M., Chopra, R., & Sharma, P. K. (2007). Morphometric analysis in Anandpur Sahib area, Punjab (India) using remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing,35, 129–139.

    Google Scholar 

  7. Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritization of sub watersheds based on morphometric analysis of drainage basin, district Midnapore, West Bengal. Journal Indian Society of Remote Sensing,27(3), 155–166.

    Google Scholar 

  8. Buckley, J. J. (1985). Ranking alternatives using fuzzy numbers. Fuzzy Sets and Systems,15(1), 21–31.

    Google Scholar 

  9. Building Material & Technology Promotion Board (BMTPB). (2003). Vulnerability Atlas. 2nd Edition, Peer Group, MoH & UPA; Seismic Zones of India IS: 1983–2002, BIS, GOI, Seismotectonic Atlas of India and Its Environs, GSI, GOI.

  10. Bull, W., & McFadden, L. (1977). Tectonic geomorphology north and south of the Garlock fault, California. In D. O. Doehring (Ed.), Geomorphology in arid regions. Publications in geomorphology (pp. 115–139). Bingamton: State University of New York at Bingamton.

    Google Scholar 

  11. Cheng, C. H. (1997). Evaluating naval tactical missile system by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research,96(2), 343–350.

    Google Scholar 

  12. Cheng, C. H., Yang, L. L., & Hwang, C. L. (1999). Evaluating attack helicopter by AHP based on linguistic variable weight. European Journal of Operational Research,116(2), 423–435.

    Google Scholar 

  13. Chopra, K., & Kadekodi, G. K. (1993). Watershed development: A contrast with NREP/JRy. Economic and Political Weekly,28(26), A61–A67.

    Google Scholar 

  14. Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurudaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing,33(4), 531–539.

    Google Scholar 

  15. Chorley, R. J. (1962). Geomorphology and general system theory. U.S. Geological Survey, Profession Paper, 500-B, 1-10.

  16. Chorley, R. J. (1969). Introduction to physical hydrology (p. 211). Suffolk: Methuen and Co., Ltd.

    Google Scholar 

  17. Chorley, R. J., & Morgan, M. A. (1962). Comparison of morphometric features on the Utah mountains, Tennessee and North Carolina and Dart Moor England. Bulletin of Geological Society of America,73, 17–34.

    Google Scholar 

  18. Chow, V. T. (1964). Handbook of applied hydrology. New York: McGraw Hill Inc.

    Google Scholar 

  19. Clarke, J. I. (1966). Morphometric from maps, essays in geomorphology (pp. 235–274). New York: Elsevier publ. co.

    Google Scholar 

  20. Das, A. K., & Mukherjee, S. (2005). Drainage morphometry using satellite data and GIS in Raigad district, Maharashtra. Journal of the Geological Society of India,65, 577–586.

    Google Scholar 

  21. Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. New York: Academic Press.

    Google Scholar 

  22. Erensal, Y. C., Öncan, T., & Dernircan, M. L. (2006). Determining key capabilities in technology management using fuzzy analytic hierarchy process: A case study of Turkey. Information Science,176(18), 2755–2770.

    Google Scholar 

  23. Fairbridge, R. W. (1968). Terraces, fluvial-environmental controls. Encyclopedia of geomorphology (pp. 1124–1138). New York: Reinhold.

    Google Scholar 

  24. Gravelius, H. (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, Vol. I. Rivers, in German). Goschen, Berlin, Germany.

  25. Gregory, K. J., & Walling, D. E. (1985). Drainage basin form and process: A geomorphological approach (pp. 47–54). Hodder & Stoughton Educational. ISBN-10: 0713157070; ISBN-13: 978-0713157079.

  26. Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. United State Geolological Survey. Prof. Paper (Vol. 292, pp. 45–97).

  27. Hack, J. T. (1973). Stream profile analysis and stream gradient index. Journal of Research of the us Geological Survey,1(4), 421–429.

    Google Scholar 

  28. Hamdouni, E., Irigaray, C., Fernandez, T., Chacón, J., & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology,96, 150–173.

    Google Scholar 

  29. Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350.

    Google Scholar 

  30. Horton, R. E. (1945). Erosional development of streams and their drainage basins: A hydrophysical approach to quantitative morphology. Geological Society of American Bulletin,56, 275–370.

    Google Scholar 

  31. Hurtrez, J. E., Sol, C., & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik hills (central Nepal). Earth Surface and Process Landform,24, 799–808.

    Google Scholar 

  32. Kale, V. S., & Gupta, A. (2001). Introduction to geomorphology (pp. 82–101). Sangam Books Ltd., Himayatnagar. ISBN-10: 8125018778; ISBN-13: 978-8125018773.

  33. Keller, E. A. (1986). Investigation of active tectonics: Use of surficial earth processes. In R. E. Wallace (Ed.), Actice tectonics. Studies in geophysiscs (pp. 136–147). WA: National Academic Press.

    Google Scholar 

  34. Krishnamurthy, J., Srinivas, G., Jayaram, V., & Chandrasekhar, M. G. (1996). Influence of rock types and structures in the development of drainage networks in typical hard-rock terrain. ITC L,3(4), 252–259.

    Google Scholar 

  35. Kumar, A., Darmora, A., & Sharma, A. (2012). Comparative assessment of hydrologic behavior of two mountainous watersheds using morphometric analysis. Hydrology Journal,35(3 & 4), 76–87. https://doi.org/10.5958/j.0975-6914.35.3X.008.

    Article  Google Scholar 

  36. Kumar, R., Kumar, S., Lohni Neemi, R. K., & Singh, A. D. (2000). Evaluation of geomorphology characteristics of a catchment using GIS. GIS India,9(3), 13–17.

    Google Scholar 

  37. Kunte, S. V. (1988). Geomorphic analysis of upper Assam plains and adjoining areas for hydrocarbon exploration. Journal of the Indian Society of Remote Sensing,16, 15–28. https://doi.org/10.1007/BF02992097.

    Article  Google Scholar 

  38. Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. W.H. Freeman and Company, San Francisco: London

    Google Scholar 

  39. Lykoudi, E., & Angelaki, M. (2004). The Contribution of the morphometric parameters of a hydrographic network to the investigation of the neotectonic activity: An application to the upper Acheloos River. In Proceedings of the 10th international congress, Thessaloniki. Bulletin of the geological society of Greece (Vol. 36, pp. 1084–1092).

  40. Macka, Z. (2001). Determination of texture of topography from large scale contour maps. Geografski Vestnik,73(2), 53–62.

    Google Scholar 

  41. Mesa, L. M. (2006). Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology,50, 1235–1242.

    Google Scholar 

  42. Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area, Varginia and Tennessee. Technical Report of Columbia university, Department of Geology, ONR, New York.

  43. Mohd, I., & Sajjad, H. (2014). Watershed prioritization using morphometric and land use/land cover parameters of Dudhganga catchment Kashmir Valley India using spatial technology. Journal of Geophysics Remote Sensing,3, 115. https://doi.org/10.4172/2169-0049.1000115.

    Article  Google Scholar 

  44. Morisawa, M. E. (1959). Relation of morphometric properties to runoff in the Little Mill Creek, Ohio drainage basin, (Columbia University, Department of Geology.). Technical Report, 17, Office of Naval Research, Project N. R, 389-042.

  45. Nag, S. K., & Chakraborty, S. (2003). Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing,31(1), 25–35.

    Google Scholar 

  46. Nautiyal, M. D. (1994). Morphometric analysis of drainage basin using aerial photograph, a case study of Khairkuli basin, District Dehradun, U.P. Journal of the Indian Society of Remote Sensing,22(4), 251–261.

    Google Scholar 

  47. Obi Reddy, G. E., Maji, A. K., & Gajbhiye, K. S. (2002). GIS for morphometricanalysis of drainage basins. GIS lndia, 4(11), 9–14.

    Google Scholar 

  48. Obi Reddy, G. E., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6, 1–16.

    Google Scholar 

  49. Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology,56, 1405–1415.

    Google Scholar 

  50. Pahari, S., Singh, H., Prasad, I. V. S. V., & Singh, R. R. (2008). Petroleum systems of upper Assam Shelf, India. Society of Petroleum Geophysicist, India. Geo-Horizons, 14–21.

  51. Pakhmode, V., Kulkarni, H., & Deolankar, S. B. (2003). Hydrological drainage analysis in watershed programme planning: A case from the Deccan Basalt, India. Hydrogeology Journal,11, 595–604.

    Google Scholar 

  52. Panhalkar, S. S., Mali, S. P., & Pawar, C. T. (2012). Morphometric analysis and watershed development prioritization of Hiranyakeshi basin in Maharastra, India. International Journal of Environmental Sciences,3(1), 525–534.

    Google Scholar 

  53. Poddar, M. C. (1952). Preliminary report of the Assam earthquake of 15th August, 1950. Journal of the Geological Society of India,2, 11–13.

    Google Scholar 

  54. Pontius, R. G., Jr., & Batchu, K. (2003). Using the relative operating characteristic to quantify certainty in prediction of location of land cover change in India. Transactions in GIS,7(4), 467–484.

    Google Scholar 

  55. Putty, M. R. Y. (2007). Quantitative geomorphology of the upper Kaveri basin in Western Ghat, in Karnataka. IE (I) Journal-CV,88, 44–49.

    Google Scholar 

  56. Read, J. M., & Lam, N. S. N. (2002). Spatial methods for characterization land cover and detecting land cover changes for the tropics. International Journal of Remote Sensing,23(12), 2457–2474.

    Google Scholar 

  57. Roy, T. K. (1975). Drainage analysis in the upper Assam valley. Indian Journal of Earth Sciences,2, 39–50.

    Google Scholar 

  58. Ruoning, X., & Xiaoyan, Z. (1992). Extensions of the analytic hierarchy process in fuzzy environment. Fuzzy Sets and System,52(3), 251–257.

    Google Scholar 

  59. Saha, A. K., Arora, M. K., Csaplovics, E., & Gupta, R. P. (2005). Land covers classification using IRS LISS III image and DEM in a rugged terrain: A case study in Himalayas. Geo Carto International,20(2), 33–40.

    Google Scholar 

  60. Sahoo, P. K., Kumar, S., & Singh, R. P. (2000). Neotectonic study of ganga and Yamuna tear faults, NW Himalaya, using remote sensing and GIS. International Journal of Remote Sensing,21(3), 499–518.

    Google Scholar 

  61. Sangma, F., & Balamurugan, G. (2017). Morphometric analysis of Kakoi River watershed for study of neotectonic activity using geospatial technology. Geosciences,8, 1384–1403.

    Google Scholar 

  62. Sarma, J. N., & Basumallick, S. (1984). Drainage analysis of the areas around the Burhi Dihing River catchment India. Indian Journal of Earth Science,11, 79–86.

    Google Scholar 

  63. Schumn, S. A. (1956). Evolution of drainage systems and slopes in Dadlands at Perth Amboy, New Jersey. Geological Society of American Bulletin,67, 597–646.

    Google Scholar 

  64. Shrestha, D. P., & Zinck, J. A. (2001). Land use classification on in mountainous areas: Integration of image processing, digital elevation data and field knowledge (application to Nepal). International Journal of Applied Earth Observation and Geo-Information,3(1), 78–85.

    Google Scholar 

  65. Singh, S., & Dhillion, S. S. (1984). Agricultural geography. New delhi: Tata McGraw Hill co.

    Google Scholar 

  66. Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar River basin. National Geographical Journal of India,43, 31–43.

    Google Scholar 

  67. Smith, K. G. (1950). Standards for grading textures of erosional topography. American Journal of Sciences,248, 655–668.

    Google Scholar 

  68. Sreedevi, P. D., Owais, S., Khan, H. H., & Ahmad, S. (2009). Morphometric analysis of a watershed of south india using SRTM data and GIS. Journal of Geological Society of India,73, 543–552.

    Google Scholar 

  69. Sreedevi, P. D., Subrahmanyam, K., & Shakeel, A. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Journal of Environmental Geology,47(3), 412–420.

    Google Scholar 

  70. Srinivasa, V. S., Govindainah, S., & Home, G. H. (2004). Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district South India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing,32(4), 351–362.

    Google Scholar 

  71. Srivastava, V. K. (1997). Study of drainage pattern of Jharia Coalfield (Bihar), India, through remote sensing technology. Journal of the Indian Society of Remote Sensing,25(1), 41–46.

    Google Scholar 

  72. Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923–938.

    Google Scholar 

  73. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union,38, 913–920.

    Google Scholar 

  74. Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of Applied Hydrology (pp. 439–476). New York: McGraw Hill.

    Google Scholar 

  75. Valdiya, K. S. (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of the Northern Indian plains. Tectonophysics,32, 353–386.

    Google Scholar 

  76. Verstappen, H. (1983). Applied geomorphology—geomorphological surveys for environmental development (pp. 57–83). New York: Elsevier.

    Google Scholar 

  77. Yasmin, P. B. S., Satish Kumar, U., Ayyangoudar, M. S., & Narayan Rao, K. (2013). Morphometric analysis of Milli watershed of Raichur district using GIS techniques. Karnataka Journal of Agriculture Science,26(1), 92–96.

    Google Scholar 

Download references

Acknowledgements

The first author would like to express his sincere gratitude to the Research and Development, TISS, Mumbai, for providing the fellowship for conducting the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Balamurugan Guru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sangma, F., Guru, B. Watersheds Characteristics and Prioritization Using Morphometric Parameters and Fuzzy Analytical Hierarchal Process (FAHP): A Part of Lower Subansiri Sub-Basin. J Indian Soc Remote Sens 48, 473–496 (2020). https://doi.org/10.1007/s12524-019-01091-6

Download citation

Keywords

  • Watersheds
  • Morphometric analysis
  • Fuzzy analytical hierarchy process
  • Neo-tectonics
  • Prioritization