Skip to main content

Advertisement

Log in

Watersheds Characteristics and Prioritization Using Morphometric Parameters and Fuzzy Analytical Hierarchal Process (FAHP): A Part of Lower Subansiri Sub-Basin

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Globally, the study of watersheds plays an important role for any kind of developmental activities and sustainable management. The present study lies in tectonically active regions of Northeast India, which needs to be given proper consideration prior to taking up any kind of developmental activity. The main objective of the research is to understand the behaviors of the watersheds in response to the neo-tectonic and to prioritize the watersheds using morphometric parameters and fuzzy-AHP. For the present studies, nine watersheds have been extracted from the Cartosat DEM using ArcGIS 10 software. Sixteen morphometric parameters indicating neo-tectonic domain have been considered for the study of prioritization of the watersheds. Firstly, the deviation of linear regression in Horton’s law of drainage order and drainage length has been discussed which indicates that all the watersheds are influenced by endogenic force, which induces the changes of the landform. Based on the FAHP weighted value, the prioritization of watershed is classified into five classes, namely very low (< 0.044), low (0.0466–0.0645), medium (0.0645–0.1112), high (0.1112–0.1818), and very high (0.1818–0.2691). The watersheds A and D are assigned to highest rank as they were within the 0.182 and 0.270 weighted values. And watershed E is lowest among the nine watersheds with weighted value of < 0.044, respectively. Finally, Kappa method has been used to validate the results and observed that 47% and 30% of the collected data fall within very high and high prioritization zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal, C. S. (1998). Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U. P. Journal of the Indian Society of Remote Sensing,26, 169–175.

    Google Scholar 

  • Ali, U., & Ali, S. A. (2014). Analysis of drainage morphometric and watershed prioritization of Romushi-Sasar catchment, Kashmir Valley, India using remote sensing and GIS technology. International Journal of Advanced Research,2(12), 5–23.

    Google Scholar 

  • Argyroiu, Athanasios (2012). A methodology for the rapid identification of neotectonic features using geographical information systems and remote sensing: A case study from Western Crete, Greece. Ph.D. thesis. School of earth and environmental sciences, University of Portsmouth, United Kingdom.

  • Awasthi, K. D., Sitaula, B. K., Singh, R. B. R., & Bajacharaya, M. (2002). Land-use change in two Nepalese watersheds: GIS and geomorphometric analysis. Land Degradation and Development,13, 495–513.

    Google Scholar 

  • Bats, R. L., & Jackson, J. (1987). Glossary of geology: Alexandria (p. 788). VA: American Geological Institute.

    Google Scholar 

  • Bhatt, C. M., Chopra, R., & Sharma, P. K. (2007). Morphometric analysis in Anandpur Sahib area, Punjab (India) using remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing,35, 129–139.

    Google Scholar 

  • Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritization of sub watersheds based on morphometric analysis of drainage basin, district Midnapore, West Bengal. Journal Indian Society of Remote Sensing,27(3), 155–166.

    Google Scholar 

  • Buckley, J. J. (1985). Ranking alternatives using fuzzy numbers. Fuzzy Sets and Systems,15(1), 21–31.

    Google Scholar 

  • Building Material & Technology Promotion Board (BMTPB). (2003). Vulnerability Atlas. 2nd Edition, Peer Group, MoH & UPA; Seismic Zones of India IS: 1983–2002, BIS, GOI, Seismotectonic Atlas of India and Its Environs, GSI, GOI.

  • Bull, W., & McFadden, L. (1977). Tectonic geomorphology north and south of the Garlock fault, California. In D. O. Doehring (Ed.), Geomorphology in arid regions. Publications in geomorphology (pp. 115–139). Bingamton: State University of New York at Bingamton.

    Google Scholar 

  • Cheng, C. H. (1997). Evaluating naval tactical missile system by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research,96(2), 343–350.

    Google Scholar 

  • Cheng, C. H., Yang, L. L., & Hwang, C. L. (1999). Evaluating attack helicopter by AHP based on linguistic variable weight. European Journal of Operational Research,116(2), 423–435.

    Google Scholar 

  • Chopra, K., & Kadekodi, G. K. (1993). Watershed development: A contrast with NREP/JRy. Economic and Political Weekly,28(26), A61–A67.

    Google Scholar 

  • Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurudaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing,33(4), 531–539.

    Google Scholar 

  • Chorley, R. J. (1962). Geomorphology and general system theory. U.S. Geological Survey, Profession Paper, 500-B, 1-10.

  • Chorley, R. J. (1969). Introduction to physical hydrology (p. 211). Suffolk: Methuen and Co., Ltd.

    Google Scholar 

  • Chorley, R. J., & Morgan, M. A. (1962). Comparison of morphometric features on the Utah mountains, Tennessee and North Carolina and Dart Moor England. Bulletin of Geological Society of America,73, 17–34.

    Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology. New York: McGraw Hill Inc.

    Google Scholar 

  • Clarke, J. I. (1966). Morphometric from maps, essays in geomorphology (pp. 235–274). New York: Elsevier publ. co.

    Google Scholar 

  • Das, A. K., & Mukherjee, S. (2005). Drainage morphometry using satellite data and GIS in Raigad district, Maharashtra. Journal of the Geological Society of India,65, 577–586.

    Google Scholar 

  • Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. New York: Academic Press.

    Google Scholar 

  • Erensal, Y. C., Öncan, T., & Dernircan, M. L. (2006). Determining key capabilities in technology management using fuzzy analytic hierarchy process: A case study of Turkey. Information Science,176(18), 2755–2770.

    Google Scholar 

  • Fairbridge, R. W. (1968). Terraces, fluvial-environmental controls. Encyclopedia of geomorphology (pp. 1124–1138). New York: Reinhold.

    Google Scholar 

  • Gravelius, H. (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, Vol. I. Rivers, in German). Goschen, Berlin, Germany.

  • Gregory, K. J., & Walling, D. E. (1985). Drainage basin form and process: A geomorphological approach (pp. 47–54). Hodder & Stoughton Educational. ISBN-10: 0713157070; ISBN-13: 978-0713157079.

  • Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. United State Geolological Survey. Prof. Paper (Vol. 292, pp. 45–97).

  • Hack, J. T. (1973). Stream profile analysis and stream gradient index. Journal of Research of the us Geological Survey,1(4), 421–429.

    Google Scholar 

  • Hamdouni, E., Irigaray, C., Fernandez, T., Chacón, J., & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology,96, 150–173.

    Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350.

    Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins: A hydrophysical approach to quantitative morphology. Geological Society of American Bulletin,56, 275–370.

    Google Scholar 

  • Hurtrez, J. E., Sol, C., & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik hills (central Nepal). Earth Surface and Process Landform,24, 799–808.

    Google Scholar 

  • Kale, V. S., & Gupta, A. (2001). Introduction to geomorphology (pp. 82–101). Sangam Books Ltd., Himayatnagar. ISBN-10: 8125018778; ISBN-13: 978-8125018773.

  • Keller, E. A. (1986). Investigation of active tectonics: Use of surficial earth processes. In R. E. Wallace (Ed.), Actice tectonics. Studies in geophysiscs (pp. 136–147). WA: National Academic Press.

    Google Scholar 

  • Krishnamurthy, J., Srinivas, G., Jayaram, V., & Chandrasekhar, M. G. (1996). Influence of rock types and structures in the development of drainage networks in typical hard-rock terrain. ITC L,3(4), 252–259.

    Google Scholar 

  • Kumar, A., Darmora, A., & Sharma, A. (2012). Comparative assessment of hydrologic behavior of two mountainous watersheds using morphometric analysis. Hydrology Journal,35(3 & 4), 76–87. https://doi.org/10.5958/j.0975-6914.35.3X.008.

    Article  Google Scholar 

  • Kumar, R., Kumar, S., Lohni Neemi, R. K., & Singh, A. D. (2000). Evaluation of geomorphology characteristics of a catchment using GIS. GIS India,9(3), 13–17.

    Google Scholar 

  • Kunte, S. V. (1988). Geomorphic analysis of upper Assam plains and adjoining areas for hydrocarbon exploration. Journal of the Indian Society of Remote Sensing,16, 15–28. https://doi.org/10.1007/BF02992097.

    Article  Google Scholar 

  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. W.H. Freeman and Company, San Francisco: London

    Google Scholar 

  • Lykoudi, E., & Angelaki, M. (2004). The Contribution of the morphometric parameters of a hydrographic network to the investigation of the neotectonic activity: An application to the upper Acheloos River. In Proceedings of the 10th international congress, Thessaloniki. Bulletin of the geological society of Greece (Vol. 36, pp. 1084–1092).

  • Macka, Z. (2001). Determination of texture of topography from large scale contour maps. Geografski Vestnik,73(2), 53–62.

    Google Scholar 

  • Mesa, L. M. (2006). Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology,50, 1235–1242.

    Google Scholar 

  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area, Varginia and Tennessee. Technical Report of Columbia university, Department of Geology, ONR, New York.

  • Mohd, I., & Sajjad, H. (2014). Watershed prioritization using morphometric and land use/land cover parameters of Dudhganga catchment Kashmir Valley India using spatial technology. Journal of Geophysics Remote Sensing,3, 115. https://doi.org/10.4172/2169-0049.1000115.

    Article  Google Scholar 

  • Morisawa, M. E. (1959). Relation of morphometric properties to runoff in the Little Mill Creek, Ohio drainage basin, (Columbia University, Department of Geology.). Technical Report, 17, Office of Naval Research, Project N. R, 389-042.

  • Nag, S. K., & Chakraborty, S. (2003). Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing,31(1), 25–35.

    Google Scholar 

  • Nautiyal, M. D. (1994). Morphometric analysis of drainage basin using aerial photograph, a case study of Khairkuli basin, District Dehradun, U.P. Journal of the Indian Society of Remote Sensing,22(4), 251–261.

    Google Scholar 

  • Obi Reddy, G. E., Maji, A. K., & Gajbhiye, K. S. (2002). GIS for morphometricanalysis of drainage basins. GIS lndia, 4(11), 9–14.

    Google Scholar 

  • Obi Reddy, G. E., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6, 1–16.

    Google Scholar 

  • Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology,56, 1405–1415.

    Google Scholar 

  • Pahari, S., Singh, H., Prasad, I. V. S. V., & Singh, R. R. (2008). Petroleum systems of upper Assam Shelf, India. Society of Petroleum Geophysicist, India. Geo-Horizons, 14–21.

  • Pakhmode, V., Kulkarni, H., & Deolankar, S. B. (2003). Hydrological drainage analysis in watershed programme planning: A case from the Deccan Basalt, India. Hydrogeology Journal,11, 595–604.

    Google Scholar 

  • Panhalkar, S. S., Mali, S. P., & Pawar, C. T. (2012). Morphometric analysis and watershed development prioritization of Hiranyakeshi basin in Maharastra, India. International Journal of Environmental Sciences,3(1), 525–534.

    Google Scholar 

  • Poddar, M. C. (1952). Preliminary report of the Assam earthquake of 15th August, 1950. Journal of the Geological Society of India,2, 11–13.

    Google Scholar 

  • Pontius, R. G., Jr., & Batchu, K. (2003). Using the relative operating characteristic to quantify certainty in prediction of location of land cover change in India. Transactions in GIS,7(4), 467–484.

    Google Scholar 

  • Putty, M. R. Y. (2007). Quantitative geomorphology of the upper Kaveri basin in Western Ghat, in Karnataka. IE (I) Journal-CV,88, 44–49.

    Google Scholar 

  • Read, J. M., & Lam, N. S. N. (2002). Spatial methods for characterization land cover and detecting land cover changes for the tropics. International Journal of Remote Sensing,23(12), 2457–2474.

    Google Scholar 

  • Roy, T. K. (1975). Drainage analysis in the upper Assam valley. Indian Journal of Earth Sciences,2, 39–50.

    Google Scholar 

  • Ruoning, X., & Xiaoyan, Z. (1992). Extensions of the analytic hierarchy process in fuzzy environment. Fuzzy Sets and System,52(3), 251–257.

    Google Scholar 

  • Saha, A. K., Arora, M. K., Csaplovics, E., & Gupta, R. P. (2005). Land covers classification using IRS LISS III image and DEM in a rugged terrain: A case study in Himalayas. Geo Carto International,20(2), 33–40.

    Google Scholar 

  • Sahoo, P. K., Kumar, S., & Singh, R. P. (2000). Neotectonic study of ganga and Yamuna tear faults, NW Himalaya, using remote sensing and GIS. International Journal of Remote Sensing,21(3), 499–518.

    Google Scholar 

  • Sangma, F., & Balamurugan, G. (2017). Morphometric analysis of Kakoi River watershed for study of neotectonic activity using geospatial technology. Geosciences,8, 1384–1403.

    Google Scholar 

  • Sarma, J. N., & Basumallick, S. (1984). Drainage analysis of the areas around the Burhi Dihing River catchment India. Indian Journal of Earth Science,11, 79–86.

    Google Scholar 

  • Schumn, S. A. (1956). Evolution of drainage systems and slopes in Dadlands at Perth Amboy, New Jersey. Geological Society of American Bulletin,67, 597–646.

    Google Scholar 

  • Shrestha, D. P., & Zinck, J. A. (2001). Land use classification on in mountainous areas: Integration of image processing, digital elevation data and field knowledge (application to Nepal). International Journal of Applied Earth Observation and Geo-Information,3(1), 78–85.

    Google Scholar 

  • Singh, S., & Dhillion, S. S. (1984). Agricultural geography. New delhi: Tata McGraw Hill co.

    Google Scholar 

  • Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar River basin. National Geographical Journal of India,43, 31–43.

    Google Scholar 

  • Smith, K. G. (1950). Standards for grading textures of erosional topography. American Journal of Sciences,248, 655–668.

    Google Scholar 

  • Sreedevi, P. D., Owais, S., Khan, H. H., & Ahmad, S. (2009). Morphometric analysis of a watershed of south india using SRTM data and GIS. Journal of Geological Society of India,73, 543–552.

    Google Scholar 

  • Sreedevi, P. D., Subrahmanyam, K., & Shakeel, A. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Journal of Environmental Geology,47(3), 412–420.

    Google Scholar 

  • Srinivasa, V. S., Govindainah, S., & Home, G. H. (2004). Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district South India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing,32(4), 351–362.

    Google Scholar 

  • Srivastava, V. K. (1997). Study of drainage pattern of Jharia Coalfield (Bihar), India, through remote sensing technology. Journal of the Indian Society of Remote Sensing,25(1), 41–46.

    Google Scholar 

  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923–938.

    Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union,38, 913–920.

    Google Scholar 

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of Applied Hydrology (pp. 439–476). New York: McGraw Hill.

    Google Scholar 

  • Valdiya, K. S. (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of the Northern Indian plains. Tectonophysics,32, 353–386.

    Google Scholar 

  • Verstappen, H. (1983). Applied geomorphology—geomorphological surveys for environmental development (pp. 57–83). New York: Elsevier.

    Google Scholar 

  • Yasmin, P. B. S., Satish Kumar, U., Ayyangoudar, M. S., & Narayan Rao, K. (2013). Morphometric analysis of Milli watershed of Raichur district using GIS techniques. Karnataka Journal of Agriculture Science,26(1), 92–96.

    Google Scholar 

Download references

Acknowledgements

The first author would like to express his sincere gratitude to the Research and Development, TISS, Mumbai, for providing the fellowship for conducting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balamurugan Guru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangma, F., Guru, B. Watersheds Characteristics and Prioritization Using Morphometric Parameters and Fuzzy Analytical Hierarchal Process (FAHP): A Part of Lower Subansiri Sub-Basin. J Indian Soc Remote Sens 48, 473–496 (2020). https://doi.org/10.1007/s12524-019-01091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01091-6

Keywords

Navigation