Skip to main content

Advertisement

Log in

Application of Sentinel-1 Data to Estimate Height and Biomass of Rice Crop in Astaneh-ye Ashrafiyeh, Iran

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice that can be estimated with assessing satellite data and field measurements by classical regression methods [multiple linear regression (MLR), relevance vector regression (RVR), and support vector regression (SVR)]. In this study, Sentinel-1 SAR data from April 2018 to September 2018 in Astaneh-ye Ashrafiyeh region in the north of Iran were used. To evaluate and analyze validation of regression methods, field measurements (gathered from 15 plots) were utilized. The efficiency of nonparametric methods (SVR and RVR) is much better than that of the parametric regression (MLR) for rice parameter estimations. Among nonparametric approaches, RVR method has better results than SVR, because of the highest correlation coefficient (R2) and lowest root mean square error (RMSE). R2 = 0.92, RMSE = 162.1, and MAE = 971.9 and R2 = 0.92, RMSE = 10.9, and MAE = 70.71 are the results of height and biomass, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ancin-Murguzur, F. J., Taff, G., Davids, C., Tømmervik, H., Mølmann, J., & Jørgensen, M. (2019). Yield estimates by a two-step approach using hyperspectral methods in grasslands at high latitudes. Remote Sensing,11(4), 400. https://doi.org/10.3390/rs11040400.

    Article  Google Scholar 

  • Club, Y. J. (2015). Statistical data. https://www.yjc.ir/fa/news/4357235.

  • Deng, X., Chen, J., Li, H., et al. (2018). Log-cumulants of the finite mixture model and their application to statistical analysis of fully polarimetric UAVSAR data. Geo-spatial Information Science, 21(1), 45–55.

    Article  Google Scholar 

  • Erten, E., Lopez-sanchez, J. M., Yuzugullu, O., & Hajnsek, I. (2016). Remote sensing of environment retrieval of agricultural crop height from space: A comparison of SAR techniques. Remote Sensing of Environment,187, 130–144. https://doi.org/10.1016/j.rse.2016.10.007.

    Article  Google Scholar 

  • Gao, G., Shi, G., Li, G., & Cheng, J. (2017a). Performance comparison between reflection symmetry metric and product of multilook amplitudes for ship detection in dual-polarization SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(11), 5026–5038.

    Article  Google Scholar 

  • Gao, Q., Zribi, M., & Escorihuela, M. J. (2017b). Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors,17(9), 1966. https://doi.org/10.3390/s17091966.

    Article  Google Scholar 

  • Guan, K., Li, Z., Rao, L. N., Gao, F., Xie, D., Hien, N. T., et al. (2018). Mapping paddy rice area and yields over Thai Binh Province in Viet Nam from MODIS, Landsat, and ALOS-2/PALSAR-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,11(7), 2238–2252.

    Article  Google Scholar 

  • Iizumi, T., Sakuma, H., Yokozawa, M., Luo, J.-j., Challinor, A. J., Brown, M. E., et al. (2013). Prediction of seasonal climate-induced variations in global food production. Nature Climate Change,3(7), 1–5. https://doi.org/10.1038/nclimate1945.

    Article  Google Scholar 

  • Koppe, W., Gnyp, M. L., Hütt, C., Yao, Y., Miao, Y., Chen, X., et al. (2013). Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. International Journal of Applied Earth Observation and Geoinformation,21, 568–576.

    Article  Google Scholar 

  • Kuenzer, C., & Knauer, K. (2013). Remote sensing of rice crop areas. International Journal of Remote Sensing,34(6), 2101–2139.

    Article  Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (1996). Applied linear statistical models. Chicago: Irwin Chicago.

    Google Scholar 

  • Lausch, A., Bastian, O., Klotz, S., Leitão, P. J., Jung, A., Rocchini, D., et al. (2018). Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods in Ecology and Evolution,9(8), 1799–1809. https://doi.org/10.1111/2041-210X.13025.

    Article  Google Scholar 

  • Lopez-Sanchez, J. M., Vicente-Guijalba, F., Ballester-Berman, J. D., & Cloude, S. R. (2014). Influence of incidence angle on the coherent copolar polarimetric response of rice at X-band. IEEE Geoscience and Remote Sensing Letters,12(2), 249–253.

    Article  Google Scholar 

  • Mostafazadeh-Fard, B., Jafari, F., Mousavi, S.-F., Yazdani, M.-R., et al. (2010). Effects of irrigation water management on yield and water use efficiency of rice in cracked paddy soils. Australian Journal of Crop Science,4(3), 136.

    Google Scholar 

  • Nguyen, D., Clauss, K., Cao, S., Naeimi, V., Kuenzer, C., & Wagner, W. (2015). Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data. Remote Sensing,7(12), 15868–15893. https://doi.org/10.3390/rs71215808.

    Article  Google Scholar 

  • Pagani, V., Guarneri, T., Busetto, L., Ranghetti, L., Boschetti, M., Movedi, E., et al. (2019). A high-resolution, integrated system for rice yield forecasting at district level. Agricultural Systems,168, 181–190. https://doi.org/10.1016/j.agsy.2018.05.007.

    Article  Google Scholar 

  • Pohl, C., & Van Genderen, J. L. (1998). Review article multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing,19(5), 823–854. https://doi.org/10.1080/014311698215748.

    Article  Google Scholar 

  • Pulvirenti, L., Chini, M., Pierdicca, N., & Boni, G. (2015). Use of SAR data for detecting floodwater in urban and agricultural areas: The role of the interferometric coherence. IEEE Transactions on Geoscience and Remote Sensing,54(3), 1532–1544.

    Article  Google Scholar 

  • Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and Remote Sensing,39(11), 2373–2379.

    Article  Google Scholar 

  • Sharifi, A. (2018). Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images. Remote Sensing Letters,9(6), 559–568. https://doi.org/10.1080/2150704X.2018.1452058.

    Article  Google Scholar 

  • Sharifi, A., & Amini, J. (2015). Forest biomass estimation using synthetic aperture radar polarimetric features. Journal of Applied Remote Sensing,9(1), 097695. https://doi.org/10.1117/1.JRS.9.097695.

    Article  Google Scholar 

  • Sharifi, A., Amini, J., Sumantyo, J. T. S., & Tateishi, R. (2015). Speckle reduction of PolSAR images in forest regions using fast ICA algorithm. Journal of the Indian Society of Remote Sensing,43(2), 339–346. https://doi.org/10.1007/s12524-014-0423-3.

    Article  Google Scholar 

  • Sharifi, A., Amini, J., & Tateishi, R. (2016). Estimation of forest biomass using multivariate relevance vector regression. Photogrammetric Engineering & Remote Sensing,82(1), 41–49. https://doi.org/10.14358/PERS.83.1.41.

    Article  Google Scholar 

  • Sharifi, A., & Hosseingholizadeh, M. (2019). The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-019-00966-y.

    Article  Google Scholar 

  • Song, M., & Chen, D. (2018). An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo-spatial Information Science, 21(4), 273–287.

    Article  Google Scholar 

  • Statistical Agricultural Data. (2015). http://www.fao.org/faostat/en/#data/QC.

  • Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2018). Estimates for world population and global food availability for global health. In R. B. Singh, R. R. Watson, & T. Takahashi (Eds.), The role of functional food security in global health. Amsterdam: Elsevier Inc. https://doi.org/10.1016/b978-0-12-813148-0.00001-3.

    Chapter  Google Scholar 

  • Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution,18(6), 306–314. https://doi.org/10.1016/S0169-5347(03)00070-3.

    Article  Google Scholar 

  • Wang, L. A., Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal,4(3), 212–219. https://doi.org/10.1016/j.cj.2016.01.008.

    Article  Google Scholar 

  • Woodhouse, I. H. (2017). Introduction to microwave remote sensing. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Yu, Y., Li, M., & Fu, Y. (2018). Forest type identification by random forest classification combined with SPOT and multitemporal SAR data. Journal of Forestry Research, 29(5), 1407–1414.

    Google Scholar 

  • Yuzugullu, O., Erten, E., & Hajnsek, I. (2016). Estimation of rice crop height from X-and C-band PolSAR by metamodel-based optimization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(1), 194–204.

    Article  Google Scholar 

  • Zhang, W., Chen, E., Li, Z., Zhao, L., Ji, Y., Zhang, Y., et al. (2018). Rape (Brassica napus L.) growth monitoring and mapping based on Radarsat-2 time-series data. Remote Sensing,10(2), 206. https://doi.org/10.3390/rs10020206.

    Article  Google Scholar 

  • Zhang, Y., Yang, B., Liu, X., & Wang, C. (2017). Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm. International Journal of Applied Earth Observation and Geoinformation,57, 75–85. https://doi.org/10.1016/j.jag.2016.12.014.

    Article  Google Scholar 

  • Zhao, W., & Du, S. (2016). Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing,113, 155–165. https://doi.org/10.1016/j.isprsjprs.2016.01.004.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shahid Rajaee Teacher Training University under contract number 97-1-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Sharifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, A., Hosseingholizadeh, M. Application of Sentinel-1 Data to Estimate Height and Biomass of Rice Crop in Astaneh-ye Ashrafiyeh, Iran. J Indian Soc Remote Sens 48, 11–19 (2020). https://doi.org/10.1007/s12524-019-01057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01057-8

Keywords

Profiles

  1. Alireza Sharifi