Abstract
Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice that can be estimated with assessing satellite data and field measurements by classical regression methods [multiple linear regression (MLR), relevance vector regression (RVR), and support vector regression (SVR)]. In this study, Sentinel-1 SAR data from April 2018 to September 2018 in Astaneh-ye Ashrafiyeh region in the north of Iran were used. To evaluate and analyze validation of regression methods, field measurements (gathered from 15 plots) were utilized. The efficiency of nonparametric methods (SVR and RVR) is much better than that of the parametric regression (MLR) for rice parameter estimations. Among nonparametric approaches, RVR method has better results than SVR, because of the highest correlation coefficient (R2) and lowest root mean square error (RMSE). R2 = 0.92, RMSE = 162.1, and MAE = 971.9 and R2 = 0.92, RMSE = 10.9, and MAE = 70.71 are the results of height and biomass, respectively.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ancin-Murguzur, F. J., Taff, G., Davids, C., Tømmervik, H., Mølmann, J., & Jørgensen, M. (2019). Yield estimates by a two-step approach using hyperspectral methods in grasslands at high latitudes. Remote Sensing,11(4), 400. https://doi.org/10.3390/rs11040400.
Club, Y. J. (2015). Statistical data. https://www.yjc.ir/fa/news/4357235.
Deng, X., Chen, J., Li, H., et al. (2018). Log-cumulants of the finite mixture model and their application to statistical analysis of fully polarimetric UAVSAR data. Geo-spatial Information Science, 21(1), 45–55.
Erten, E., Lopez-sanchez, J. M., Yuzugullu, O., & Hajnsek, I. (2016). Remote sensing of environment retrieval of agricultural crop height from space: A comparison of SAR techniques. Remote Sensing of Environment,187, 130–144. https://doi.org/10.1016/j.rse.2016.10.007.
Gao, G., Shi, G., Li, G., & Cheng, J. (2017a). Performance comparison between reflection symmetry metric and product of multilook amplitudes for ship detection in dual-polarization SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(11), 5026–5038.
Gao, Q., Zribi, M., & Escorihuela, M. J. (2017b). Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors,17(9), 1966. https://doi.org/10.3390/s17091966.
Guan, K., Li, Z., Rao, L. N., Gao, F., Xie, D., Hien, N. T., et al. (2018). Mapping paddy rice area and yields over Thai Binh Province in Viet Nam from MODIS, Landsat, and ALOS-2/PALSAR-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,11(7), 2238–2252.
Iizumi, T., Sakuma, H., Yokozawa, M., Luo, J.-j., Challinor, A. J., Brown, M. E., et al. (2013). Prediction of seasonal climate-induced variations in global food production. Nature Climate Change,3(7), 1–5. https://doi.org/10.1038/nclimate1945.
Koppe, W., Gnyp, M. L., Hütt, C., Yao, Y., Miao, Y., Chen, X., et al. (2013). Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. International Journal of Applied Earth Observation and Geoinformation,21, 568–576.
Kuenzer, C., & Knauer, K. (2013). Remote sensing of rice crop areas. International Journal of Remote Sensing,34(6), 2101–2139.
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (1996). Applied linear statistical models. Chicago: Irwin Chicago.
Lausch, A., Bastian, O., Klotz, S., Leitão, P. J., Jung, A., Rocchini, D., et al. (2018). Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods in Ecology and Evolution,9(8), 1799–1809. https://doi.org/10.1111/2041-210X.13025.
Lopez-Sanchez, J. M., Vicente-Guijalba, F., Ballester-Berman, J. D., & Cloude, S. R. (2014). Influence of incidence angle on the coherent copolar polarimetric response of rice at X-band. IEEE Geoscience and Remote Sensing Letters,12(2), 249–253.
Mostafazadeh-Fard, B., Jafari, F., Mousavi, S.-F., Yazdani, M.-R., et al. (2010). Effects of irrigation water management on yield and water use efficiency of rice in cracked paddy soils. Australian Journal of Crop Science,4(3), 136.
Nguyen, D., Clauss, K., Cao, S., Naeimi, V., Kuenzer, C., & Wagner, W. (2015). Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data. Remote Sensing,7(12), 15868–15893. https://doi.org/10.3390/rs71215808.
Pagani, V., Guarneri, T., Busetto, L., Ranghetti, L., Boschetti, M., Movedi, E., et al. (2019). A high-resolution, integrated system for rice yield forecasting at district level. Agricultural Systems,168, 181–190. https://doi.org/10.1016/j.agsy.2018.05.007.
Pohl, C., & Van Genderen, J. L. (1998). Review article multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing,19(5), 823–854. https://doi.org/10.1080/014311698215748.
Pulvirenti, L., Chini, M., Pierdicca, N., & Boni, G. (2015). Use of SAR data for detecting floodwater in urban and agricultural areas: The role of the interferometric coherence. IEEE Transactions on Geoscience and Remote Sensing,54(3), 1532–1544.
Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and Remote Sensing,39(11), 2373–2379.
Sharifi, A. (2018). Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images. Remote Sensing Letters,9(6), 559–568. https://doi.org/10.1080/2150704X.2018.1452058.
Sharifi, A., & Amini, J. (2015). Forest biomass estimation using synthetic aperture radar polarimetric features. Journal of Applied Remote Sensing,9(1), 097695. https://doi.org/10.1117/1.JRS.9.097695.
Sharifi, A., Amini, J., Sumantyo, J. T. S., & Tateishi, R. (2015). Speckle reduction of PolSAR images in forest regions using fast ICA algorithm. Journal of the Indian Society of Remote Sensing,43(2), 339–346. https://doi.org/10.1007/s12524-014-0423-3.
Sharifi, A., Amini, J., & Tateishi, R. (2016). Estimation of forest biomass using multivariate relevance vector regression. Photogrammetric Engineering & Remote Sensing,82(1), 41–49. https://doi.org/10.14358/PERS.83.1.41.
Sharifi, A., & Hosseingholizadeh, M. (2019). The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-019-00966-y.
Song, M., & Chen, D. (2018). An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo-spatial Information Science, 21(4), 273–287.
Statistical Agricultural Data. (2015). http://www.fao.org/faostat/en/#data/QC.
Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2018). Estimates for world population and global food availability for global health. In R. B. Singh, R. R. Watson, & T. Takahashi (Eds.), The role of functional food security in global health. Amsterdam: Elsevier Inc. https://doi.org/10.1016/b978-0-12-813148-0.00001-3.
Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution,18(6), 306–314. https://doi.org/10.1016/S0169-5347(03)00070-3.
Wang, L. A., Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal,4(3), 212–219. https://doi.org/10.1016/j.cj.2016.01.008.
Woodhouse, I. H. (2017). Introduction to microwave remote sensing. Boca Raton: CRC Press.
Yu, Y., Li, M., & Fu, Y. (2018). Forest type identification by random forest classification combined with SPOT and multitemporal SAR data. Journal of Forestry Research, 29(5), 1407–1414.
Yuzugullu, O., Erten, E., & Hajnsek, I. (2016). Estimation of rice crop height from X-and C-band PolSAR by metamodel-based optimization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(1), 194–204.
Zhang, W., Chen, E., Li, Z., Zhao, L., Ji, Y., Zhang, Y., et al. (2018). Rape (Brassica napus L.) growth monitoring and mapping based on Radarsat-2 time-series data. Remote Sensing,10(2), 206. https://doi.org/10.3390/rs10020206.
Zhang, Y., Yang, B., Liu, X., & Wang, C. (2017). Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm. International Journal of Applied Earth Observation and Geoinformation,57, 75–85. https://doi.org/10.1016/j.jag.2016.12.014.
Zhao, W., & Du, S. (2016). Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing,113, 155–165. https://doi.org/10.1016/j.isprsjprs.2016.01.004.
Acknowledgements
This work was supported by Shahid Rajaee Teacher Training University under contract number 97-1-4.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Sharifi, A., Hosseingholizadeh, M. Application of Sentinel-1 Data to Estimate Height and Biomass of Rice Crop in Astaneh-ye Ashrafiyeh, Iran. J Indian Soc Remote Sens 48, 11–19 (2020). https://doi.org/10.1007/s12524-019-01057-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12524-019-01057-8

