Skip to main content
Log in

Soil Moisture Retrieval Using Quad-Polarized SAR Data from Radar Imaging Satellite 1 (RISAT1) Through Artificial Intelligence-Based Soft Computing Techniques

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The present study aims to explore and compare the potential of different Artificial Intelligence-based Soft Computing (AISC) techniques to prepare surface Soil Moisture Content (SMC) map using fine-resolution (~ 5 m), quad-polarized Synthetic Aperture Radar (SAR) data obtained from Radar Imaging Satellite 1 (RISAT1). Potential of three different AISC techniques, i.e. Support Vector Machine (SVM), Random Forest (RF) and Genetic Programming (GP), is explored. The estimated surface SMC is validated with the field soil moisture values in both bare and vegetated lands (< 30 cm height). Different techniques have their own merits and demerits; however, we recommend GP to be most useful due to its other features. For example, GP provides the mathematical relationship, importance and sensitivity of each individual input to the surface SMC. This helps us to quantify the contribution of quad-polarized backscattering coefficients and soil texture information. It is noticed that the use of only SAR data without soil texture information may be acceptable with reasonable accuracy with an enormous benefit of its applicability to the locations without soil texture information. Using this, an exemplary fine-resolution (~ 5 m) SMC map is developed. Such high-resolution maps for large spatial extent are expected to be highly useful in many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(2010), 69–80.

    Article  Google Scholar 

  • Alavi, A. H., & Gandomi, A. H. (2011). A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations, 28(3), 242–274.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Coleman, M. L., & Niemann, J. D. (2012). An evaluation of nonlinear methods for estimating catchment-scale soil moisture patterns based on topographic attributes. Journal of Hydroinfomatics, 14(3), 800–814. https://doi.org/10.2166/hydro.2012.145.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • El-Baroudy, I., Elshorbagy, A., Carey, S. K., Giustolisi, O., & Savic, D. (2010). Comparison of three data-driven techniques in modelling the evapotranspiration process. Journal of Hydroinformatics, 12(4), 365. https://doi.org/10.2166/hydro.2010.029.

    Article  Google Scholar 

  • Elshorbagy, A., & El-Baroudy, I. (2009). Investigating the capabilities of evolutionary data-driven techniques using the challenging estimation of soil moisture content. Journal of Hydroinformatics, 11(3–4), 237–251.

    Article  Google Scholar 

  • Espinoza-Dávalos, G. E., Arctur, D. K., Teng, W., Maidment, D. R., García-Martí, I., & Comair, G. (2016). Studying soil moisture at a national level through statistical analysis of NASA NLDAS data. Journal of Hydroinformatics, 18(2), 277–287. https://doi.org/10.2166/hydro.2015.231.

    Article  Google Scholar 

  • Gill, M. K., Asefa, T., Kemblowski, M., & McKee, M. (2006). Soil moisture prediction using support vector machines. Journal of the American Water Resources Association, 42(4), 1033–1046.

    Article  Google Scholar 

  • Han, D., Chan, L., & Zhu, N. (2007). Flood forecasting using support vector machines. Journal of Hydroinformatics, 9(4), 267–276. https://doi.org/10.2166/hydro.2007.027.

    Article  Google Scholar 

  • Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., & Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons. Advances in Water Resources, 109, 236–252. https://doi.org/10.1016/j.advwatres.2017.09.010.

    Article  Google Scholar 

  • Kim, Y., Jackson, T., Bindlish, R., Lee, H., & Hong, S. (2012). Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geoscience and Remote Sensing Letters, 9(4), 564–568.

    Article  Google Scholar 

  • Kornelsen, K. C., & Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489.

    Article  Google Scholar 

  • Koza, J. (1992). Genetic programming, on the programming of computers by means of natural selection. Cambridge, MA: MIT Press.

    Google Scholar 

  • Li, X., Sha, J., Li, Y., & Wang, Z. L. (2018). Comparison of hybrid models for daily streamflow prediction in a forested basin. Journal of Hydroinformatics, 20(1), 191–205. https://doi.org/10.2166/hydro.2017.189.

    Article  Google Scholar 

  • Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., De Jeu, R. A. M., Wagner, W., McCabe, M. F., et al. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 123, 280–297. https://doi.org/10.1016/j.rse.2012.03.014.

    Article  Google Scholar 

  • Maity, R., & Kashid, S. S. (2011). Importance analysis of local and global climate inputs for basin-scale streamflow prediction. Water Resources Research, 47(11), W11504. https://doi.org/10.1029/2010WR009742.

    Article  Google Scholar 

  • Makkeasorn, A., Chang, N. B., & Li, J. (2009). Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. Journal of Environmental Management, 90(2), 1069–1080.

    Article  Google Scholar 

  • Notarnicola, C., Angiulli, M., & Posa, F. (2008). Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 547–557.

    Article  Google Scholar 

  • Pal, M., Maity, R., Suman, M., Das, S. K., Patel, P., & Srivastava, H. S. (2017). Satellite based probabilistic assessment of soil moisture using C-band Quad-polarized RISAT 1 data. IEEE Transactions on Geoscience and Remote Sensing, 55(3), 1351–1362. https://doi.org/10.1109/TGRS.2016.2623378.

    Article  Google Scholar 

  • Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013). Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248.

    Article  Google Scholar 

  • Pasolli, L., Notarnicola, C., Bertoldi, G., Bruzzone, L., Remelgado, R., Greifeneder, F., et al. (2015). Estimation of soil moisture in mountain areas using SVR technique applied to multiscale active radar images at C-band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 262–283.

    Article  Google Scholar 

  • Rodríguez-Fernández, N. J., Aires, F., Richaume, P., Kerr, Y. H., Prigent, C., Kolassa, J., et al. (2015). Soil moisture retrieval using neural networks: Application to SMOS. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 5991–6007.

    Article  Google Scholar 

  • Rutkowski, L., Jaworski, M., Pietruczuk, L., & Duda, P. (2015). A new method for data stream mining based on the misclassification error. IEEE Transactions on Neural Networks and Learning Systems, 26(5), 1048–1059.

    Article  Google Scholar 

  • SAC. (2015). RISAT-1 Data products format—version 1.4, Space Applications Centre, Indian Space 627 Research Organization, Ahmedabad, India, September, 2015. https://nrsc.gov.in/sites/all/pdf/format3.pdf. Accessed March 2018.

  • Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81–85.

    Article  Google Scholar 

  • Ulaby, F., Moore, R., & Fung, A. (1982). Microwave remote sensing: active and passive. Volume III, from theory to application. Dedham, MA: Artech House.

    Google Scholar 

  • Unnikrishnan, P., & Jothiprakash, V. (2017). Data-driven multi-time-step ahead daily rainfall forecasting using singular spectrum analysis-based data pre-processing. Journal of Hydroinformatics, jh2017029. https://doi.org/10.2166/hydro.2017.029.

    Article  Google Scholar 

  • Zribi, M., Baghdadi, N., Holah, N., & Fafin, O. (2005). New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion. Remote Sensing of Environment, 96(3), 485–496.

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by a research project sponsored by the Space Application Centre (SAC), Indian Space Research Organization (ISRO), Govt. of India (Ref No.: IIT/SRIC/CE/VIR/2016-17/88).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Maity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3043 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Maity, R. Soil Moisture Retrieval Using Quad-Polarized SAR Data from Radar Imaging Satellite 1 (RISAT1) Through Artificial Intelligence-Based Soft Computing Techniques. J Indian Soc Remote Sens 47, 1671–1682 (2019). https://doi.org/10.1007/s12524-019-01015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01015-4

Keywords

Navigation