A Framelet-Based SFIM Method to Pan-Sharpen THEOS Imagery

  • Yindi Zhao
  • Bo WuEmail author
Research Article


This paper proposes an improved framelet-based pan-sharpening algorithm for Thailand Earth Observation System (THEOS) imagery to decrease the effects of different acquisition times between panchromatic (Pan) and multispectral (MS) images, in which the smoothing filter-based intensity modulation (SFIM) is introduced into low-frequency information fusion instead of the conventional “mean” rule. Moreover, a two-layer procedure is presented to reduce the impacts of mixed pixels caused by the large difference of spatial resolutions between the Pan and MS images. The proposed method is tested on two THEOS datasets and compared with the Gram–Schmidt, SFIM and traditional framelet-based methods. The portability across contourlet transform is also examined. Both qualitative and quantitative evaluation results demonstrate that the proposed method is more independent of the illumination of the Pan image and can achieve better spectral fidelity while maintaining spatial sharpness.


THEOS Pan-sharpening Framelet SFIM Spectral fidelity 



Funding was provided by the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS050), and the National Natural Science Foundation of China (Grant Nos. 41571330, 41601453).


  1. Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., & Bruce, L. M. (2007). Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3012–3021.CrossRefGoogle Scholar
  2. Amolins, K., Zhang, Y., & Dare, P. (2007). Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 249–263.CrossRefGoogle Scholar
  3. Baronti, S., Aiazzi, B., Selva, M., Garzelli, A., & Alparone, L. (2011). A theoretical analysis of the effects of aliasing and misregistration on pansharpened imagery. IEEE Journal of Selected Topics in Signal Processing, 5(3), 446–453.CrossRefGoogle Scholar
  4. Bhatnagar, G., & Wu, Q. J. (2012). An image fusion framework based on human visual system in framelet domain. International Journal of Wavelets, Multiresolution and Information Processing, 10(01), 1250002.CrossRefGoogle Scholar
  5. Choi, M. J., Lee, D. H., & Lim, H. S. (2008). Framelet-based multiresolution image fusion with an improved intensity-hue-saturation transform. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1273–1280.Google Scholar
  6. Da Cunha, A. L., Zhou, J., & Do, M. N. (2006). The nonsubsampled contourlet transform: theory, design, and applications. IEEE Transactions on Image Processing, 15(10), 3089–3101.CrossRefGoogle Scholar
  7. Duran, J., Buades, A., Coll, B., Sbert, C., & Blanchet, G. (2017). A survey of pansharpening methods with a new band-decoupled variational model. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 78–105.CrossRefGoogle Scholar
  8. González-Audícana, M., Saleta, J. L., Catalán, R. G., & García, R. (2004). Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1291–1299.CrossRefGoogle Scholar
  9. Han, B. (2013). Properties of discrete framelet transforms. Mathematical Modelling of Natural Phenomena, 8(1), 18–47.CrossRefGoogle Scholar
  10. Han, B. (2015). Algorithm for constructing symmetric dual framelet filter banks. Mathematics of Computation, 84(292), 767–801.CrossRefGoogle Scholar
  11. Han, B., & Zhao, Z. (2014). Tensor product complex tight framelets with increasing directionality. SIAM Journal on Imaging Sciences, 7(2), 997–1034.CrossRefGoogle Scholar
  12. Lebrun, J., & Selesnick, I. (2004). Gröbner bases and wavelet design. Journal of Symbolic Computation, 37(2), 227–259.CrossRefGoogle Scholar
  13. Liu, J. G. (2000). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 21(18), 3461–3472.CrossRefGoogle Scholar
  14. Liu, P., Xiao, L., & Li, T. (2018). A variational pan-sharpening method based on spatial fractional-order geometry and spectral–spatial low-rank priors. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1788–1802.CrossRefGoogle Scholar
  15. Mallika, K., Arathi, T., Krishna Rao, G. V., & Soman, K. P. (2009). Framelet based image fusion for the enhancement of cloud associated shadow areas in satellite images. In International conference on advances in computing, control, and telecommunication technologies (pp. 507–509). IEEE.Google Scholar
  16. Masi, G., Cozzolino, D., Verdoliva, L., & Scarpa, G. (2016). Pansharpening by convolutional neural networks. Remote Sensing, 8(7), 594.CrossRefGoogle Scholar
  17. Meng, X., Shen, H., Li, H., Zhang, L., & Fu, R. (2019). Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Information Fusion, 46, 102–113.CrossRefGoogle Scholar
  18. Piella, G. (2003). A general framework for multiresolution image fusion: From pixels to regions. Information fusion, 4(4), 259–280.CrossRefGoogle Scholar
  19. Prost, G. L. (2013). Remote sensing for geoscientists: Image analysis and integration. Boca Raton: CRC Press.CrossRefGoogle Scholar
  20. Selesnick, I. W. (2004). The double-density dual-tree DWT. IEEE Transactions on Signal Processing, 52(5), 1304–1314.CrossRefGoogle Scholar
  21. Selesnick, I. W., & Abdelnour, A. F. (2004). Symmetric wavelet tight frames with two generators. Applied and Computational Harmonic Analysis, 17(2), 211–225.CrossRefGoogle Scholar
  22. Shah, V. P., Younan, N. H., & King, R. L. (2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1323–1335.CrossRefGoogle Scholar
  23. Sonobe, R., Tani, H., & Wang, X. (2014). Detection of ambrosia beetles using a pan-sharpened image generated from AALOS/AVNIR-2 and ALOS/PRISM imagery. Forest Systems, 23(1), 178–182.CrossRefGoogle Scholar
  24. Thomas, C., Ranchin, T., Wald, L., & Chanussot, J. (2008). Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1301–1312.CrossRefGoogle Scholar
  25. Vivone, G., Alparone, L., Chanussot, J., Mura, M. D., Garzelli, A., Licciardi, G. A., et al. (2015). A critical comparison among pan sharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2565–2586.CrossRefGoogle Scholar
  26. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.CrossRefGoogle Scholar
  27. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  28. Wei, Y., Yuan, Q., Shen, H., & Zhang, L. (2017). Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geoscience and Remote Sensing Letters, 14(10), 1795–1799.CrossRefGoogle Scholar
  29. Woodcock, C. E., & Ozdogan, M. (2012). Trends in land cover mapping and monitoring. In G. Gutman, A. C. Janetos, C. O. Justice, E. F. Moran, J. F. Mustard, R. R. Rindfuss, D. Skole, B. L. TurnerII, M. A. Cochrane (Eds.), Land change science (pp. 367–377). Dordrecht: Springer.CrossRefGoogle Scholar
  30. Wu, B., Fu, Q., Sun, L., & Wang, X. (2015). Enhanced hyperspherical color space fusion technique preserving spectral and spatial content. Journal of Applied Remote Sensing, 9(1), 097291.CrossRefGoogle Scholar
  31. Xing, Y., Wang, M., Yang, S., & Jiao, L. (2018). Pan-sharpening via deep metric learning. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 165–183.CrossRefGoogle Scholar
  32. Xu, Q., Zhang, Y., & Li, B. (2014). Recent advances in pansharpening and key problems in applications. International Journal of Image and Data Fusion, 5(3), 175–195.CrossRefGoogle Scholar
  33. Xydeas, C. A., & Petrovic, V. (2000). Objective image fusion performance measure. Electronics Letters, 36(4), 308–309.CrossRefGoogle Scholar
  34. Zhang, J. (2010). Multi-source remote sensing data fusion: Status and trends. International Journal of Image and Data Fusion, 1(1), 5–24.CrossRefGoogle Scholar
  35. Zheng, H., Zheng, D., Hu, Y., & Li, S. (2010). Study on the optimal parameters of image fusion based on wavelet transform. Journal of Computational Information Systems, 6(1), 131–137.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.School of Geography and EnvironmentJiangxi normal UniversityNanchangPeople’s Republic of China
  3. 3.Key Laboratory of PoYang Lake Wetland and Watershed Research, Ministry of EducationJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations