Skip to main content

Advertisement

Log in

Using GIS to Develop a Model for Forest Fire Risk Mapping

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Forests are the most beautiful natural resources around the world and play a pivotal role in preserving environmental balance. An important measure taken for managing and protecting forest areas as well as for decreasing the potential damages caused by the fire is the detection of regions susceptible to forest fire through forest fire risk mapping with different models and methods. In recent years, a geographic information system (GIS)-based multi-criteria decision analyses (MCDA) have been successfully applied in the production of forest fire risk maps. In this study, GIS-based analytical network process as MCDA method was employed in order to provide the fire risk map of Noshahr Forests (North Iran) using slope, slope aspect, altitude, land cover, normalized difference vegetation index, annual rainfall, annual temperature, distance to settlements, and distance to road as input data. Furthermore, to prepare the map of the distribution of occurred fires, MODIS fire product and wide-field observations were used. Thereafter, each of these subcriteria of the utilized factors was standardized according to their significance in a forest fire and then with the extracted coefficients in the analytical network process model merged in ArcGIS software. Finally, the fire risk map was generated. Evaluation of the results obtained using receiver operating characteristic curve indicated that the designed model has good accuracy with a value of under curve area of 0.783. According to the map prepared, 57.45% of the study area (1034.41 km2) is located in the high and very high-risk classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, L., & Rahman, N. A. A. (2017). Analytic network process for developing relative weight of wastewater treatment technology selection. Modern Applied Science, 11, 64.

    Article  Google Scholar 

  • Adab, H., Kanniah, D., & Solaimani, K. (2011). GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. In International conference on environmental and computer science IPCBEE (pp. 170–175).

  • Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards, 65, 1723–1743.

    Article  Google Scholar 

  • Agee, J. K., & Skinner, C. N. (2005). Basic principles of forest fuel reduction treatments. Forest Ecology and Management, 211, 83–96.

    Article  Google Scholar 

  • Ahmadi, H., Nilashi, M., & Ibrahim, O. (2015). Organizational decision to adopt hospital information system: An empirical investigation in the case of Malaysian public hospitals. International Journal of Medical Informatics, 84, 166–188.

    Article  Google Scholar 

  • Aleemahmoodi Sarab, S., Feghhi, J., Danehkar, A., & Attarod, P. (2015). Effects of dereference evapotranspiration and relative humidity on forest fire occurrences in Zagros Forests, west of Iran (Case study: Khouzestan province). Forest and Range Protection Research, 12, 79–86.

    Google Scholar 

  • Alexandrian, D., & Esnault, F. (1999). Public policies affecting forest fires in the Mediterranean Basin. FAO forestry paper 39-58.

  • Alexandridis, A., Vakalis, D., Siettos, C. I., & Bafas, G. V. (2008). A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation, 204, 191–201.

    Article  Google Scholar 

  • Althouse, A. D. (2016). Statistical graphics in action: Making better sense of the ROC curve. International Journal of Cardiology, 215, 9.

    Article  Google Scholar 

  • Argañaraz, J. P., Pizarro, G. G., Zak, M., Landi, M. A., & Bellis, L. M. (2015). Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Science of the Total Environment, 520, 1–12.

    Article  Google Scholar 

  • Arpaci, A., Malowerschnig, B., Sass, O., & Vacik, H. (2014). Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53, 258–270.

    Article  Google Scholar 

  • Artsybashev, E. (1983). Forest fires and their control. New Delhi: Oxonian.

    Google Scholar 

  • Bagheri, A., & Ghorbani, A. (2011). Adoption and non-adoption of sprinkler irrigation technology in Ardabil Province of Iran. African Journal of Agricultural Research, 6, 1085–1089.

    Google Scholar 

  • Bathrellos, G. D., Skilodimou, H. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2017). Suitability estimation for urban development using multi-hazard assessment map. Science of the Total Environment, 575, 119–134.

    Article  Google Scholar 

  • Brown, A. A., & Davis, K. P. (1973). Forest fire: Control and use. New York: McGraw-Hill.

    Google Scholar 

  • Bui, D. T., Bui, Q.-T., Nguyen, Q.-P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44.

    Article  Google Scholar 

  • Chiang, Y.-M., Chen, W.-L., & Ho, C.-H. (2016). Application of analytic network process and two-dimensional matrix evaluating decision for design strategy. Computers and Industrial Engineering, 98, 237–245.

    Article  Google Scholar 

  • Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of Environment, 29, 147–159.

    Article  Google Scholar 

  • Chuvieco, E., & Salas, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science, 10, 333–345.

    Google Scholar 

  • Constantin, M., Bednarik, M., Jurchescu, M. C., & Vlaicu, M. (2011). Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Sciences, 63, 397–406.

    Article  Google Scholar 

  • Cooper, J. A., Miller, G. J., & Humphries, S. E. (2005). A comparison of the PROCAM and Framingham point-scoring systems for estimation of individual risk of coronary heart disease in the Second Northwick Park Heart Study. Atherosclerosis, 181, 93–100.

    Article  Google Scholar 

  • Darand, M., Amanollahi, J., & Zandkarimi, S. (2017). Evaluation of the performance of TRMM multi-satellite precipitation analysis (TMPA) estimation over Iran. Atmospheric Research, 190, 121–127.

    Article  Google Scholar 

  • Dingman, S. L., Seely-Reynolds, D. M., & Reynolds, R. C. (1988). Application of kriging to estimating mean annual precipitation in a region of orographic influence. JAWRA Journal of the American Water Resources Association, 24, 329–339.

    Article  Google Scholar 

  • Dong, X., Li-min, D., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research, 16, 169–174.

    Article  Google Scholar 

  • Erten, E., Kurgun, V., & Musaoglu, N. (2004). Forest fire risk zone mapping from satellite imagery and GIS: a case study. In 20th congress of the international society for photogrammetry and remote sensing (pp. 222–230). Istanbul.

  • Esfahani, M. D., Ramayah, T., & Nilashi, M. (2017). Modelling upper echelons’ behavioural drivers of green IT/IS adoption using an integrated Interpretive structural modelling-analytic network process approach. Telematics and Informatics, 34, 583–603.

    Article  Google Scholar 

  • Eugenio, F. C., Dos Santos, A. R., Fiedler, N. C., Ribeiro, G. A., da Silva, A. G., Dos Santos, Á. B., et al. (2016). Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. Journal of Environmental Management, 173, 65–71.

    Article  Google Scholar 

  • FAO. (2015). Global forest resources assessment 2015. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Faramarzi, H., Hosseini, S. M., & Gholamalifard, M. (2014). Fire hazard zoning in national golestan park using logistic regression and GIS. Geography and Environmental Hazards, 3, 73–90.

    Google Scholar 

  • Feizizadeh, B., Omrani, K., & Aghdam, F. B. (2015). Fuzzy analytical hierarchical process and spatially explicit uncertainty analysis approach for multiple forest fire risk mapping. GI_Forum, 2015, 72–80.

    Article  Google Scholar 

  • Fernandes, A. M., Utkin, A. B., Lavrov, A. V., & Vilar, R. M. (2004). Development of neural network committee machines for automatic forest fire detection using lidar. Pattern Recognition, 37, 2039–2047.

    Article  Google Scholar 

  • Gandhi, M. (2016). Unsustainable use of natural resources. People, Planet, and Progress Beyond, 2015, 105.

    Google Scholar 

  • Gao, J.-X., Chen, Y.-M., Lü, S.-H., Feng, C.-Y., Chang, X.-L., Ye, S.-X., et al. (2012). A ground spectral model for estimating biomass at the peak of the growing season in Hulunbeier grassland, Inner Mongolia, China. International Journal of Remote Sensing, 33, 4029–4043.

    Article  Google Scholar 

  • Garavand, S., Yaralli, N., & Sadeghi, H. (2013). Spatial pattern and mapping fire risk occurrence at natural lands of Lorestan province. Rangelands and Forests Plant Breeding and Genetic Research, 21, 231–242.

    Google Scholar 

  • Garen, D. C., Johnson, G. L., & Hanson, C. L. (1994). Mean areal precipitation for daily hydrologic modeling in mountainous regions. JAWRA Journal of the American Water Resources Association, 30, 481–491.

    Article  Google Scholar 

  • Goldarag, Y. J., Mohammadzadeh, A., & Ardakani, A. (2016). Fire risk assessment using neural network and logistic regression. Journal of the Indian Society of Remote Sensing, 44, 1–10.

    Article  Google Scholar 

  • Hashemi, S. H., Karimi, A., & Tavana, M. (2015). An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. International Journal of Production Economics, 159, 178–191.

    Article  Google Scholar 

  • Hevesi, J. A., Istok, J. D., & Flint, A. L. (1992). Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. Journal of Applied Meteorology, 31, 661–676.

    Article  Google Scholar 

  • Hunter, R. D., & Meentemeyer, R. K. (2005). Climatologically aided mapping of daily precipitation and temperature. Journal of Applied Meteorology, 44, 1501–1510.

    Article  Google Scholar 

  • Hussey, L. K., & Malczewski, J. (2016). Housing quality evaluation using analytic network process: A case study in the Ashanti Region, Ghana. African Geographical Review, 37, 1–20.

    Article  Google Scholar 

  • Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4, 1–10.

    Article  Google Scholar 

  • Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega, 35, 274–289.

    Article  Google Scholar 

  • Kant Sharma, L., Kanga, S., Singh Nathawat, M., Sinha, S., & Chandra Pandey, P. (2012). Fuzzy AHP for forest fire risk modeling. Disaster Prevention and Management: An International Journal, 21, 160–171.

    Article  Google Scholar 

  • Kantardzic, M. (2011). Data mining: Concepts, models, methods, and algorithms. New York: Wiley.

    Book  Google Scholar 

  • Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11, 425–439.

    Article  Google Scholar 

  • Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9–20.

    Article  Google Scholar 

  • Kirytopoulos, K., Voulgaridou, D., Platis, A., & Leopoulos, V. (2011). An effective Markov based approach for calculating the limit matrix in the analytic network process. European Journal of Operational Research, 214, 85–90.

    Article  Google Scholar 

  • Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22, 2353–2369.

    Article  Google Scholar 

  • Ma, W., Fang, J., Yang, Y., & Mohammat, A. (2010). Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Science China Life Sciences, 53, 841–850.

    Article  Google Scholar 

  • Mavsar, R., Cabán, A. G., & Varela, E. (2013). The state of development of fire management decision support systems in America and Europe. Forest Policy and Economics, 29, 45–55.

    Article  Google Scholar 

  • Mirdeilami, T., Shataee, S., & Kavoosi, M. R. (2015). Forest fire risk zone mapping in the Golestan national park using regression logistic method. Wood and Forest Science and Technology, 22, 1–16.

    Google Scholar 

  • Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J., et al. (2012). Climate change and disruptions to global fire activity. Ecosphere, 3, 1–22.

    Article  Google Scholar 

  • Neaupane, K. M., & Piantanakulchai, M. (2006). Analytic network process model for landslide hazard zonation. Engineering Geology, 85, 281–294.

    Article  Google Scholar 

  • Nilashi, M., bin Ibrahim, O., & Ithnin, N. (2014). Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and neuro-fuzzy system. Knowledge-Based Systems, 60, 82–101.

    Article  Google Scholar 

  • Nonomura, A., Masuda, T., & Moriya, H. (2007). Wildfire damage evaluation by merging remote sensing with a fire area simulation model in Naoshima, Kagawa, Japan. Landscape and Ecological Engineering, 3, 109–117.

    Article  Google Scholar 

  • Ocampo, L. A., & Seva, R. R. (2016). Using analytic network process for evaluating mobile text entry methods. Applied Ergonomics, 52, 232–241.

    Article  Google Scholar 

  • Palmisano, G. O., Loisi, R. V., Ruggiero, G., Rocchi, L., Boggia, A., Roma, R., et al. (2016). Using analytic network process and dominance-based rough set approach for sustainable requalification of traditional farm buildings in Southern Italy. Land Use Policy, 59, 95–110.

    Article  Google Scholar 

  • Pan, J., Wang, W., & Li, J. (2016). Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China. Natural Hazards, 81, 1879–1899.

    Article  Google Scholar 

  • Phillips, D. L., Dolph, J., & Marks, D. (1992). A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology, 58, 119–141.

    Article  Google Scholar 

  • Pourghasemi, H., Beheshtirad, M., & Pradhan, B. (2016). A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomatics, Natural Hazards and Risk, 7, 861–885.

    Article  Google Scholar 

  • Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., & Semeraro, T. (2016). Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators, 64, 72–84.

    Article  Google Scholar 

  • Pourtaghi, Z. S., Pourghasemi, H. R., & Rossi, M. (2015). Forest fire susceptibility mapping in the Minudasht forests, Golestan Province. Iran. Environmental Earth Sciences, 73, 1515–1533.

    Article  Google Scholar 

  • Pradhan, B., Dini Hairi Bin Suliman, M., & Arshad Bin Awang, M. (2007). Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prevention and Management: An International Journal, 16, 344–352.

    Article  Google Scholar 

  • Rahmati, O., Haghizadeh, A., Pourghasemi, H. R., & Noormohamadi, F. (2016). Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82, 1231–1258.

    Article  Google Scholar 

  • Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8, 867–883.

    Article  Google Scholar 

  • Renard, Q., Pélissier, R., Ramesh, B., & Kodandapani, N. (2012). Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21, 368–379.

    Article  Google Scholar 

  • Roy, B. (1996). Multicriteria methodology for decision aiding, volume 12 of nonconvex optimization and its applications. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9–26.

    Article  Google Scholar 

  • Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. Pittsburgh: RWS Publication.

    Google Scholar 

  • Saaty, T. L. (1999). Fundamentals of the analytic network process. Japan, Kobe: The International Symposium on the Analytic Hierarchy Process.

    Google Scholar 

  • Saaty, T. L. (2004). Fundamentals of the analytic network process—Multiple networks with benefits, costs, opportunities and risks. Journal of Systems Science and Systems Engineering, 13, 348–379.

    Article  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2013). Decision making with the analytic network process: Economic, political, social and technological applications with benefits, opportunities, costs and risks. Berlin: Springer.

    Book  Google Scholar 

  • Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7, 1645–1658.

    Article  Google Scholar 

  • Shinneman, D. J., Palik, B. J., & Cornett, M. W. (2012). Can landscape-level ecological restoration influence fire risk? A spatially-explicit assessment of a northern temperate-southern boreal forest landscape. Forest Ecology and Management, 274, 126–135.

    Article  Google Scholar 

  • Soto, M. E. C. (2012). The identification and assessment of areas at risk of forest fire using fuzzy methodology. Applied Geography, 35, 199–207.

    Article  Google Scholar 

  • Stow, D., Petersen, A., Hope, A., Engstrom, R., & Coulter, L. (2007). Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. International Journal of Remote Sensing, 28, 4807–4822.

    Article  Google Scholar 

  • Tien Bui, D., Pham, B. T., Nguyen, Q. P., & Hoang, N.-D. (2016). Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: A case study in Central Vietnam. International Journal of Digital Earth, 9, 1077–1097.

    Article  Google Scholar 

  • Ussiri, D. A., & Lal, R. (2017). Global forests management for climate change mitigation. Carbon sequestration for climate change mitigation and adaptation (pp. 395–432). Berlin: Springer.

    Book  Google Scholar 

  • Vakalis, D., Sarimveis, H., Kiranoudis, C., Alexandridis, A., & Bafas, G. (2004). A GIS based operational system for wildland fire crisis management I. Mathematical modelling and simulation. Applied Mathematical Modelling, 28, 389–410.

    Article  Google Scholar 

  • Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., Van Aardt, J., & Coppin, P. (2007). Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment, 108, 357–368.

    Article  Google Scholar 

  • Voulgaridou, D., Kirytopoulos, K., & Leopoulos, V. (2009). An analytic network process approach for sales forecasting. Operational Research, 9, 35–53.

    Article  Google Scholar 

  • Williams, R. N., de Souza, P. A., & Jones, E. M. (2014). Analysing coastal ocean model outputs using competitive-learning pattern recognition techniques. Environmental Modelling and Software, 57, 165–176.

    Article  Google Scholar 

  • Xiaoge, P., Yamin, Q., & Yamin, H. (2014). An empirical study of performance evaluation of electronic resources in Chinese academic libraries based on analytic network process. Journal of Academic Libraries, 4, 009.

    Google Scholar 

  • You, W., Lin, L., Wu, L., Ji, Z., Ja, Yu., Zhu, J., et al. (2017). Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability. Ecological Indicators, 77, 176–184.

    Article  Google Scholar 

  • Yue, J., Feng, Z., Jiang, W., & Yang, X. (2007). Risk management: A probe and study on forest fires. Frontiers of Forestry in China, 2, 335.

    Article  Google Scholar 

  • Yüksel, İ., & Dagdeviren, M. (2007). Using the analytic network process (ANP) in a SWOT analysis—A case study for a textile firm. Information Sciences, 177, 3364–3382.

    Article  Google Scholar 

  • Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6, 2873–2888.

    Article  Google Scholar 

  • Zhang, J. (2016). Weighing and realizing the environmental, economic and social goals of tourism development using an analytic network process-goal programming approach. Journal of Cleaner Production, 127, 262–273.

    Article  Google Scholar 

  • Zhang, J. (2017). Evaluating regional low-carbon tourism strategies using the fuzzy Delphi-analytic network process approach. Journal of Cleaner Production, 141, 409–419.

    Article  Google Scholar 

  • Zhang, G., Dong, J., Xiao, X., Hu, Z., & Sheldon, S. (2012). Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering, 38, 20–29.

    Article  Google Scholar 

  • Ziegler, D., Laude, D., Akila, F., & Elghozi, J.-L. (2001). Time-and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clinical Autonomic Research, 11, 369–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abedi Gheshlaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi Gheshlaghi, H. Using GIS to Develop a Model for Forest Fire Risk Mapping. J Indian Soc Remote Sens 47, 1173–1185 (2019). https://doi.org/10.1007/s12524-019-00981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00981-z

Keywords

Navigation