Skip to main content
Log in

Understanding Spatio-temporal Pattern of Grassland Phenology in the western Indian Himalayan State

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The present study has analysed grassland phenology: start of greening (SOG), end of greening (EOG) and length of greening (LOG), and their rate of change in the western Himalaya in India (Himachal Pradesh) using MODIS NDVI time series data (2001–2015). These metrics were inspected at different stratification levels: state, elevation, climatic zones and bio-geographic provinces. Delayed SOG was observed over 44.87% (P < 0.1), and delayed EOG over 63.3% (P < 0.1) of grassland grids. LOG was shortened in 24.37% (P < 0.1) and extended in 58.04% (P < 0.1) of the grids. At the state level, when statistically significant pixels (SSP) and all the pixels (AP) are used (given as SSP:AP), SOG is delayed by 20.27:6.28 days year−15, while EOG is delayed by 38.02:14.97 days year−15 and LOG is extended by 35.07:8.70 year−15 days. Extended LOG is observed over the temperate and cold arid regions, and shortened LOG is observed over sub-alpine and alpine regions. Variations in SOG and EOG are not uniform across different climatic and bio-geographic regions. However, in the sub-alpine and alpine zones, SOG and EOG followed elevation gradients, i.e. late SOG with early EOG over higher elevations, and early SOG with late EOG over lower elevations. Our study has revealed an interesting pattern of translational phenology (i.e. late SOG and late EOG) of grasslands which hints towards shifting winter period. Overall, it is observed that variations in timing of snowfall and snow cover extent are the reasons for inter-annual variations in the grassland phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad, S., Dar, H. U., Dar, J. A., & Majeedi, Z. M. (2013). Impact of varying disturbances on the structure and composition of grassland vegetation in Anantnag, Kashmir Himalayas. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(3), 219–228.

    Google Scholar 

  • Babu, P. K. S., Menon, A. R. R., Suraj, M. A., Varghese, A. O., & Kumar, M. P. (1997). High altitude shola and grassland studies using remote sensing. Indian Journal of Forestry, 20(1), 82–88.

    Google Scholar 

  • Bagchi, S., Gupta, E., Murthy, K., & Singh, N. J. (2017). Assessing the evidence for changes in vegetation phenology in high-altitude Wetlands of Ladakh (2002–2015). In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the himalayas (pp. 205–216). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Bala, G., Joshi, J., Chaturvedi, R. K., Gangamani, H. V., Hashimoto, H., & Nemani, R. (2013). Trends and variability of AVHRR-derived NPP in India. Remote Sensing, 5(2), 810.

    Article  Google Scholar 

  • Bhan, S. C., & Singh, M. (2011). Analysis of total precipitation and snowfall pattern over Shimla. Journal of Agrometeorology, 13(2), 141–144.

    Google Scholar 

  • Bhatt, S. C., & Bhargava, G. K. (Eds.). (2006). Land and people of Indian States and Union Territories: Himachal Pradesh (Land and People of Indian States and Union Territories: In 36 Volumes, Vol. 10). Delhi: Kalpaz Publication.

  • Biswas, T., Ramsey, R. D., Bissonette, J. A., & Symanzik, J. (2014). Integration of two spectral indices to monitor loss of moist grasslands within the Jaldapara Wildlife Sanctuary, India. International Journal of Remote Sensing, 35(3), 1038–1063. https://doi.org/10.1080/01431161.2013.875631.

    Article  Google Scholar 

  • Chawla, A., Yadav, P. K., Uniyal, S. K., Kumar, A., Vats, S. K., Kumar, S., et al. (2012). Long-term ecological and biodiversity monitoring in the western Himalaya using satellite remote sensing. Current Science (Bangalore), 102(8), 1143–1156.

    Google Scholar 

  • Chevuturi, A., Dimri, A. P., & Thayyen, R. J. (2016). Climate change over Leh (Ladakh), India. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-016-1989-1.

    Article  Google Scholar 

  • Davis, C. C., Willis, C. G., Primack, R. B., & Miller-Rushing, A. J. (2010). The importance of phylogeny to the study of phenological response to global climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3201–3213. https://doi.org/10.1098/rstb.2010.0130.

    Article  Google Scholar 

  • de Oliveira, J. C., & Epiphanio, J. C. N. (2012). Noise reduction in MODIS NDVI time series data based on spatial-temporal analysis. In 2012 (pp. 2372–2375). IEEE.

  • Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3–4), 775–800.

    Article  Google Scholar 

  • Diodato, N., Bellocchi, G., & Tartari, G. (2012). How do Himalayan areas respond to global warming? International Journal of Climatology, 32(7), 975–982.

    Article  Google Scholar 

  • Dong, S., Chettri, N., & Sharma, E. (2017). Himalayan biodiversity: Trans-boundary conservation institution and governance. In S. Dong, J. Bandyopadhyay, & S. Chaturvedi (Eds.) Environmental sustainability from the Himalayas to the oceans (pp. 127–143). Berlin: Springer.

  • Fontana, F., Rixen, C., Jonas, T., Aberegg, G., & Wunderle, S. (2008). Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series-a comparison with in situ measurements. Sensors, 8(4), 2833–2853.

    Article  Google Scholar 

  • Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., et al. (2015). Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 21(9), 3414–3435. https://doi.org/10.1111/gcb.12950.

    Article  Google Scholar 

  • Gatis, N., Anderson, K., Grand-Clement, E., Luscombe, D. J., Hartley, I. P., Smith, D., et al. (2017). Evaluating MODIS vegetation products using digital images for quantifying local peatland CO2 gas fluxes. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.45.

    Article  Google Scholar 

  • Guan, K., Wood, E. F., Medvigy, D., Kimball, J., Pan, M., Caylor, K. K., et al. (2014). Terrestrial hydrological controls on land surface phenology of African savannas and woodlands: Hydrology controls on African phenology. Journal of Geophysical Research: Biogeosciences, 119(8), 1652–1669. https://doi.org/10.1002/2013JG002572.

    Article  Google Scholar 

  • Gutman, G. G. (1991). Vegetation indices from AVHRR: An update and future prospects. Remote Sensing of Environment, 35(2–3), 121–136.

    Article  Google Scholar 

  • Hird, J. N., & McDermid, G. J. (2009). Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 113(1), 248–258. https://doi.org/10.1016/j.rse.2008.09.003.

    Article  Google Scholar 

  • Hou, X., Gao, S., Niu, Z., & Xu, Z. (2014). Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data. International Journal of Remote Sensing, 35(9), 3316–3330. https://doi.org/10.1080/01431161.2014.903437.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195–213.

    Article  Google Scholar 

  • Hwang, T., Song, C., Vose, J. M., & Band, L. E. (2011). Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecology, 26(4), 541–556. https://doi.org/10.1007/s10980-011-9580-8.

    Article  Google Scholar 

  • IANS. (2013). Shimla snowfall at eight-year record. http://www.indiatvnews.com/news/india/shimla-snowfall-at-eight-year-record-19752.html. Accessed 28 July 2017.

  • IMD. (2017). Statement on Climate of India during 2016.

  • IPCC. (2007). Climate change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental Panel on Climate Change. Cambridge, New York, NY: Cambridge University Press.

  • Jadhav, R. N., Kimothi, M. M., & Kandya, A. K. (1993). Grassland mapping/monitoring of Banni, Kachchh (Gujarat) using remotely-sensed data. International Journal of Remote Sensing, 14(17), 3093–3103. https://doi.org/10.1080/01431169308904422.

    Article  Google Scholar 

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2010a). Characterising the spatial pattern of phenology for the tropical vegetation of India using multi-temporal MERIS chlorophyll data. Landscape Ecology, 25(7), 1125–1141. https://doi.org/10.1007/s10980-010-9490-1.

    Article  Google Scholar 

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2010b). Mapping the phenology of natural vegetation in India using a remote sensing-derived chlorophyll index. International Journal of Remote Sensing, 31(22), 5777–5796. https://doi.org/10.1080/01431161.2010.512303.

    Article  Google Scholar 

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2014). Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143, 154–170. https://doi.org/10.1016/j.rse.2013.11.020.

    Article  Google Scholar 

  • Kumar, A., Adhikari, B. S., & Rawat, G. S. (2017). Biogeographic delineation of the Indian Trans-Himalaya: Need for revision. Current Science, 113(6), 1032–1033.

    Google Scholar 

  • Kumar, A., Rawat, G. S., & Adhikari, B. S. (2015). Rangeland vegetation of the Indian trans-himalaya: An ecological review. In G. S. Rawat & B. S. Adhikari (Eds.), Ecology and management of Grassland habitats in India, ENVIS bulletin: Wildlife and protect areas (Vol. 17, pp. 29–41). Dehradun: Wildlife Institute of India.

    Google Scholar 

  • Kumar, M., Singh, H. S., Pandey, R., Singh, M. P., Ravindranath, N. H., et al. (2018). Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodiversity and Conservation. https://doi.org/10.1007/s10531-018-1663-2.

    Article  Google Scholar 

  • Lal, J. B., Gulati, A. K., & Bist, M. S. (1991). Satellite mapping of alpine pastures in the Himalayas. International Journal of Remote Sensing, 12(3), 435–443. https://doi.org/10.1080/01431169108929664.

    Article  Google Scholar 

  • Liang, L., & Schwartz, M. D. (2009). Landscape phenology: An integrative approach to seasonal vegetation dynamics. Landscape Ecology, 24(4), 465–472. https://doi.org/10.1007/s10980-009-9328-x.

    Article  Google Scholar 

  • Ma, X., Huete, A., Yu, Q., Coupe, N. R., Davies, K., Broich, M., et al. (2013). Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 139, 97–115. https://doi.org/10.1016/j.rse.2013.07.030.

    Article  Google Scholar 

  • Maignan, F., Bréon, F. M., Bacour, C., Demarty, J., & Poirson, A. (2008). Interannual vegetation phenology estimates from global AVHRR measurements. Remote Sensing of Environment, 112(2), 496–505. https://doi.org/10.1016/j.rse.2007.05.011.

    Article  Google Scholar 

  • Mishra, N. B., & Mainali, K. P. (2017). Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Science of the Total Environment, 587–588, 326–339. https://doi.org/10.1016/j.scitotenv.2017.02.156.

    Article  Google Scholar 

  • Motohka, T., Nasahara, K. N., Murakami, K., & Nagai, S. (2011). Evaluation of sub-pixel cloud noises on MODIS daily spectral indices based on in situ measurements. Remote Sensing, 3(12), 1644–1662. https://doi.org/10.3390/rs3081644.

    Article  Google Scholar 

  • Moulin, S., Kergoat, L., Viovy, N., & Dedieu, G. (1997). Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10(6), 1154–1170.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698–702. https://doi.org/10.1038/386698a0.

    Article  Google Scholar 

  • Nag, P., & Sengupta, S. (1992). Geography of India. New Delhi: Concept Publishing Company.

    Google Scholar 

  • NRSC. (2012). National land use land cover mapping using multi-temporal satellite data technical manual (2nd cycle). Hyderabad: National Remote Sensing Centre.

    Google Scholar 

  • Palni, L. M. S., & Rawal, R. S. (2010). Conservation of Himalayan bioresources: An ecological, economical and evolutionary perspective. In V. P. Sharma (Ed.), Nature at work: Ongoing saga of evolution (pp. 369–402). New Delhi: Springer India.

    Chapter  Google Scholar 

  • Panday, P. K., & Ghimire, B. (2012). Time-series analysis of NDVI from AVHRR data over the Hindu Kush-Himalayan region for the period 1982–2006. International Journal of Remote Sensing, 33(21), 6710–6721. https://doi.org/10.1080/01431161.2012.692836.

    Article  Google Scholar 

  • Pau, S., & Still, C. J. (2014). Phenology and productivity of C3 and C4 Grasslands in Hawaii. PLoS ONE, 9(10), e107396. https://doi.org/10.1371/journal.pone.0107396.

    Article  Google Scholar 

  • Paudel, K. P., & Andersen, P. (2013). Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Climatic Change, 117(1–2), 149–162. https://doi.org/10.1007/s10584-012-0562-x.

    Article  Google Scholar 

  • Planning Commission. (2011). Report of the sub group III on fodder and pasture management. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjE4tGN1pzhAhVBUlAKHfi7BlgQFjAAegQIAxAC&url=http%3A%2F%2Fplanningcommission.gov.in%2Faboutus%2Fcommittee%2Fwrkgrp12%2Fenf%2Fwg_subfooder.pdf&usg=AOvVaw0crw7hxsP_Tzr0zwdRJPp-.

  • Qamer, F., Xi, C., Abbas, S., Murthy, M., Ning, W., & Anming, B. (2016). An assessment of productivity patterns of grass-dominated Rangelands in the Hindu Kush Karakoram Region, Pakistan. Sustainability, 8(10), 961. https://doi.org/10.3390/su8090961.

    Article  Google Scholar 

  • Qiu, B., Zhong, M., Tang, Z., & Chen, C. (2013). Spatiotemporal variability of vegetation phenology with reference to altitude and climate in the subtropical mountain and hill region, China. Chinese Science Bulletin, 58(23), 2883–2892. https://doi.org/10.1007/s11434-013-5847-6.

    Article  Google Scholar 

  • Rana, R. S., Bhagat, R. M., Kalia, V., & Lal, H. (2009). Impact of climate change on shift of apple belt in Himachal Pradesh. In Impact of climate change on agriculture, 2009/12/17/18 2009 (Vol. XXXVIII-8/W3, pp. 131–137). Ahmedabad: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives).

  • Randhawa, S. S., Rathore, B. P., & Rai, I. (2016). Monitoring of seasonal snow cover in Himachal Pradesh using satellite data. Shimla: Himachal Pradesh State Centre on Climate Change.

    Google Scholar 

  • Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012.

    Article  Google Scholar 

  • Rodgers, W. A., Panwar, H. S., & Mathur, V. B. (2002). Wildlife protected area network in India: A review (executive summary) (p. 44p). Dehradun: Wildlife Institute of India.

    Google Scholar 

  • Roy, D. P., Borak, J. S., Devadiga, S., Wolfe, R. E., Zheng, M., & Descloitres, J. (2002). The MODIS land product quality assessment approach. Remote Sensing of Environment, 83(1), 62–76.

    Article  Google Scholar 

  • SAC. (2016). Monitoring snow and glaciers of Himalayan Region, space applications centre: Space applications centre. Ahmedabad: ISRO.

    Google Scholar 

  • Samra, J. S., Singh, G., & Ramakrishna, Y. S. (2003). Cold wave of 2002–03: Impact on agriculture. Nagpur: Natural Resource Management Division, Indian Council of Agricultural Research.

    Google Scholar 

  • Schwartz, M. D., & Reed, B. C. (1999). Surface phenology and satellite sensor-derived onset of greenness: An initial comparison. International Journal of Remote Sensing, 20(17), 3451–3457.

    Article  Google Scholar 

  • Sha, Z., Zhong, J., Bai, Y., Tan, X., & Li, J. (2016). Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China. Journal of Arid Land, 8(3), 462–477. https://doi.org/10.1007/s40333-016-0121-9.

    Article  Google Scholar 

  • Sharma, J. R., & Ghosh, A. N. (1997). Grassland productivity in the Indian Himalaya and performance of introduced temperate forage species in cold and semi-arid environment. In XVIII international grassland congress, 1997/06/08/19 1997 (pp. 21–43, v. 1).

  • Sharma, P. D., & Minhas, R. S. (1993). Land use and the biophysical environment of Kinnaur District, Himachal Pradesh, India. Mountain Research and Development, 13(1), 41. https://doi.org/10.2307/3673643.

    Article  Google Scholar 

  • Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112.

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786.

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE, 7(5), e36741. https://doi.org/10.1371/journal.pone.0036741.

    Article  Google Scholar 

  • Singh, D., Juyal, V., & Sharma, V. (2016). Consistent seasonal snow cover depth and duration variability over the Western Himalayas (WH). Journal of Earth System Science, 125(7), 1451–1461. https://doi.org/10.1007/s12040-016-0737-3.

    Article  Google Scholar 

  • Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical influence on precipitation distribution in different ranges of western Himalayas. Hydrology Research, 26(4–5), 259–284.

    Article  Google Scholar 

  • Stöckli, R., Rutishauser, T., Baker, I., Liniger, M. A., & Denning, A. S. (2011). A global reanalysis of vegetation phenology. Journal of Geophysical Research. https://doi.org/10.1029/2010jg001545.

    Article  Google Scholar 

  • Studer, S., Stöckli, R., Appenzeller, C., & Vidale, P. L. (2007). A comparative study of satellite and ground-based phenology. International Journal of Biometeorology, 51(5), 405–414. https://doi.org/10.1007/s00484-006-0080-5.

    Article  Google Scholar 

  • Tasumi, M., Hirakawa, K., Hasegawa, N., Nishiwaki, A., & Kimura, R. (2014). Application of MODIS land products to assessment of land degradation of Alpine Rangeland in Northern India with limited ground-based information. Remote Sensing, 6(10), 9260–9276. https://doi.org/10.3390/rs6109260.

    Article  Google Scholar 

  • Testa, S., Mondino, E. C. B., & Pedroli, C. (2014). Correcting MODIS 16-day composite NDVI time-series with actual acquisition dates. European Journal of Remote Sensing, 47(1), 285–305. https://doi.org/10.5721/EuJRS20144718.

    Article  Google Scholar 

  • Tewari, V. P., & Kapoor, K. S. (2013). Western Himalayan cold deserts: Biodiversity, eco-restoration, ecological concerns and securities. Annals of Arid Zone, 52, 225–232.

    Google Scholar 

  • Thomson Reuters Foundation. (2017). World’s ‘highest’ village in Spiti Valley runs dry as global warming hits the Himalayas. http://www.hindustantimes.com/india-news/world-s-highest-village-runs-dry-as-warming-hits-the-himalayas/story-QSAB2bLTwWSFobNrm56uxM.html. Accessed 15 December 2018.

  • Tiwari, P. C., & Joshi, B. (2013). An ecological assessment of grasslands and their interfaces in Kumaon Himalaya, India. In W. Ning (Ed.), High-altitude rangelands and their interfaces in the Hindu Kush Himalayas (pp. 55–64). Kathmandu, Nepal: International Centre for Integrated Mountain Development.

  • Tiwari, S., Kar, S. C., & Bhatla, R. (2016). Examination of snowmelt over Western Himalayas using remote sensing data. Theoretical and Applied Climatology, 125(1–2), 227–239. https://doi.org/10.1007/s00704-015-1506-y.

    Article  Google Scholar 

  • Vanak, A. T., Kulkarni, A., Gode, A., Sheth, C., & Krishnaswamy, J. (2015). Extent and status of semiarid savanna grasslands in Peninsular India. In G. S. Rawat & B. S. Adhikari (Eds.), Ecology and management of grassland habitats in India, ENVIS bulletin: Wildlife and protected areas (Vol. 17, pp. 192–201). Dehradun: Wildlife Institute of India.

    Google Scholar 

  • Verhegghen, A., Bontemps, S., & Defourny, P. (2014). A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily spot-vegetation observations. International Journal of Remote Sensing, 35(7), 2440–2471. https://doi.org/10.1080/01431161.2014.883105.

    Article  Google Scholar 

  • Viña, A., Liu, W., Zhou, S., Huang, J., & Liu, J. (2016). Land surface phenology as an indicator of biodiversity patterns. Ecological Indicators, 64, 281–288. https://doi.org/10.1016/j.ecolind.2016.01.007.

    Article  Google Scholar 

  • Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X., & Peng, Y. (2016). Temporal trends and spatial variability of vegetation phenology over the Northern hemisphere during 1982–2012. PLoS ONE, 11(6), e0157134. https://doi.org/10.1371/journal.pone.0157134.

    Article  Google Scholar 

  • White, M. A., de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P., et al. (2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 15(10), 2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x.

    Article  Google Scholar 

  • White, M. A., & Nemani, R. R. (2006). Real-time monitoring and short-term forecasting of land surface phenology. Remote Sensing of Environment, 104(1), 43–49. https://doi.org/10.1016/j.rse.2006.04.014.

    Article  Google Scholar 

  • White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11(2), 217–234. https://doi.org/10.1029/97GB00330.

    Article  Google Scholar 

  • Xia, H., Li, A., Zhao, W., Jin, H., Lei, G., Bian, J., et al. (2014). Spatio-temporal variation and driving forces in alpine grassland phenology in the Zoigê plateau from 2001–2013. In 2014 (pp. 2181–2184). IEEE.

  • Xie, Y., Ahmed, K. F., Allen, J. M., Wilson, A. M., & Silander, J. A. (2015). Green-up of deciduous forest communities of northeastern North America in response to climate variation and climate change. Landscape Ecology, 30(1), 109–123. https://doi.org/10.1007/s10980-014-0099-7.

    Article  Google Scholar 

  • Xin, Q., Broich, M., Zhu, P., & Gong, P. (2015). Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sensing of Environment, 161, 63–77. https://doi.org/10.1016/j.rse.2015.02.003.

    Article  Google Scholar 

  • Yu, L., Liu, T., Bu, K., Yan, F., Yang, J., Chang, L., et al. (2017). Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Scientific Reports. https://doi.org/10.1038/s41598-017-14918-4.

    Article  Google Scholar 

  • Zhang, J., Chang, Q., & Yao, F. (2015). Grassland phenology in different eco-geographic regions over the Tibetan Plateau. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9, 964–969.

    Google Scholar 

  • Zhang, X., Friedl, M. A., Schaaf, C. B., & Strahler, A. H. (2004). Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Global Change Biology, 10(7), 1133–1145.

    Article  Google Scholar 

  • Zhang, X., Hodges, J. C. F., Schaaf, C. B., Friedl, M. A., Strahler, A. H., & Gao, F. (2001). Global vegetation phenology from AVHRR and MODIS data. In 2001 (Vol. 5, pp. 2262–2264). IEEE.

  • Zoffoli, M. L., Kandus, P., Madanes, N., & Calvo, D. H. (2008). Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana Delta Region. Landscape Ecology, 23(7), 833–848. https://doi.org/10.1007/s10980-008-9240-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshit Rajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 143 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, H., Jeganathan, C. Understanding Spatio-temporal Pattern of Grassland Phenology in the western Indian Himalayan State. J Indian Soc Remote Sens 47, 1137–1151 (2019). https://doi.org/10.1007/s12524-019-00976-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00976-w

Keywords

Navigation