Skip to main content

Advertisement

Log in

New Triangle Vegetation Indices for Estimating Leaf Area Index on Maize

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Vegetation index-based methods have been widely used to determine the leaf area index (LAI). Nevertheless, under the high canopy coverage, the estimation ability of current inversion models has been profoundly decreased, due to the “saturation” phenomenon. In this study, the LAI of maize was investigated under various growth conditions. Two new triangular vegetation indices were proposed to improve the inversion ability and estimation accuracy of LAI on maize. The triangle difference vegetation index (TDVI) and triangle ratio vegetation index (TRVI) were constructed, and their accuracies were compared with the present spectral vegetation index models. The result shows that TDVI and TRVI are highly linearly correlated with LAI. The coefficients of determination (R2) and root-mean-square errors are, respectively, 0.92 and 0.94, and 1.42 and 0.92 using the simulated data, while they are, respectively, 0.83 and 0.77, and 0.98 and 1.05 using the measured data. In comparison with other vegetation indices (e.g. MSR, MTVI2, RTVI), TDVI is better able to estimate the LAI of maize. Conversely, TRVI has better inversion ability when the LAI is more than 3. Overall, TDVI is an accurate and robust approach for estimating the LAI of maize. The proposed TDVI and TRVI can be jointly used to retrieve LAI at various canopy coverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Broge, N. H., & Mortensen, J. V. (2002). Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 81, 45–57.

    Article  Google Scholar 

  • Chen, P. F., Haboudane, D., Tremblay, N., Wang, J., Vigneault, P., & Li, B. (2010). New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment, 114, 1987–1997.

    Article  Google Scholar 

  • Clevers, J. G., Kooistra, L., & van den Brande, M. M. (2017). Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 9, 405.

    Article  Google Scholar 

  • Darvishzadeh, R., Atzberger, C., Skidmore, A. K., & Abkar, A. A. (2009). Leaf Area Index derivation from hyperspectral vegetation indices and the red edge position. International Journal of Remote Sensing, 30, 6199–6218.

    Article  Google Scholar 

  • Feng, R., Zhang, Y., Yu, W., Hu, W., Wu, J., Ji, R., et al. (2013). Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress. Acta Ecologica Sinica, 33, 301–307.

    Article  Google Scholar 

  • Gu, Z., Shi, X., Li, L., Yu, D., Liu, L., & Zhang, W. (2011). Using multiple radiometric correction images to estimate leaf area index. International Journal of Remote Sensing, 32, 9441–9454.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352.

    Article  Google Scholar 

  • Haboudane, D., Tremblay, N., Miller, J. R., & Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 46, 423–437.

    Article  Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.

    Article  Google Scholar 

  • Jacquemoud, S., Baret, F., Andrieu, B., Danson, F. M., & Jaggard, K. (1995). Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data application to TM and AVIRIS sensors. Remote Sensing of Environment, 52, 163–172.

    Article  Google Scholar 

  • Jay, S., Maupas, F., Bendoula, R., & Gorretta, N. (2017). Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 210, 33–46.

    Article  Google Scholar 

  • Kira, O., Nguy-Robertson, A. L., Arkebauer, T. J., Linker, R., & Gitelson, A. A. (2016). Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agricultural and Forest Meteorology, 218, 243–249.

    Article  Google Scholar 

  • Liang, L., Di, L., Zhang, L., Deng, M., Qin, Z., Zhao, S., et al. (2015). Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165, 123–134.

    Article  Google Scholar 

  • Liu, J., Pattey, E., & Jégo, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358.

    Article  Google Scholar 

  • Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., et al. (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83, 214–231.

    Article  Google Scholar 

  • Nicolas, T., Philippe, V., & Huang, W. J. (2015). New index for crop canopy fresh biomass estimation. Spectroscopy and Spectral Analysis, 30, 512–517.

    Google Scholar 

  • Patel, N. K., Patnaik, C., Dutta, S., Shekh, A. M., & Dave, A. J. (2001). Study of crop growth parameters using airborne imaging spectrometer. International Journal of Remote Sensing, 22, 2401–2411.

    Article  Google Scholar 

  • Pearson, R. L., & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of productivity of the shortgrass prairie, Pawnee National Grasslands. In Proceedings of the 8th international symposium on remote sensing of environment, 26 October (pp. l357–1379). Ann Arbor, MI: Willow Run Laboratories, Environmental Research Institute of Michigan.

  • Potithep, S., Nagai, S., Nasahara, K. N., Muraoka, H., & Suzuki, R. (2013). Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 169, 148–155.

    Article  Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48, 119–126.

    Article  Google Scholar 

  • Richardson, A. J., & Wiegand, C. L. (1997). Distinguishing vegetation from soil background information. Photogrammetric Engineering & Remote Sensing, 43, 1541–1552.

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Deering, D. W., & Schell, J. A. (1978). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Final Rep. RSC 4, Remote Sensing Center, Texas A&M University, College Station, TX.

  • Shibayama, M., & Akiyama, T. (1989). Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment, 27, 119–127.

    Article  Google Scholar 

  • Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment, 16, 125–141.

    Article  Google Scholar 

  • Wang, Z., Wang, J., Liu, L., Huang, W., Zhao, C., & Lu, Y. (2005). Estimation of nitrogen status in middle and bottom layers of winter wheat canopy by using ground-measured canopy reflectance. Communications in Soil Science and Plant Analysis, 36, 2289–2302.

    Article  Google Scholar 

  • Wang, H., Liu, D., Lin, H., Montenegro A., & Zhou, X. (2015). NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. International Journal of Climatology, 35, 687–698.

    Article  Google Scholar 

  • Xie, Q., Huang, W., Liang, D., Chen, P., Wu, C., Yang, G., et al. (2014). Leaf area index estimation using vegetation indices derived from airborne hyperspectral images in winter wheat. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 7, 3586–3594.

    Article  Google Scholar 

  • Xie, Q., Huang, W., Zhang, B., Chen, P., Song, X., Pascucci, S., et al. (2016). Estimating winter wheat leaf area index from ground and hyperspectral observations using vegetation indices. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9, 771–780.

    Article  Google Scholar 

  • Xie, D., Qin, W., Wang, P., Shuai, Y., Zhou, Y., & Zhu, Q. (2017). Influences of leaf-specular reflection on canopy BRF characteristics: A case study of real maize canopies with a 3-D scene BRDF model. IEEE Transactions on Geoscience and Remote Sensing, 55, 619–631.

    Article  Google Scholar 

  • Yu, K., Lenz-Wiedemann, V., Chen, X., & Bareth, G. (2014). Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 58–77.

    Article  Google Scholar 

  • Zou, X., Hernández-Clemente, R., Tammeorg, P., Lizarazo Torres, C., Stoddard, F. L., Mäkelä, P., et al. (2015). Retrieval of leaf chlorophyll content in field crops using narrow-band indices: effects of leaf area index and leaf mean tilt angle. International Journal of Remote Sensing, 36, 6031–6055.

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by Anhui Provincial Science and Technology Project (16,030,701,091), National Natural Science Foundation of China (61661136004) and Anhui Provincial Natural Science Foundation (1608085MF139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjiang Huang or Jinling Zhao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Song, F., Huang, W. et al. New Triangle Vegetation Indices for Estimating Leaf Area Index on Maize. J Indian Soc Remote Sens 46, 1907–1914 (2018). https://doi.org/10.1007/s12524-018-0849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0849-0

Keywords

Profiles

  1. Jinling Zhao