Skip to main content
Log in

A Hybrid CNN + Random Forest Approach to Delineate Debris Covered Glaciers Using Deep Features

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The main aim of this study is to propose a novel hybrid deep learning framework approach for accurate mapping of debris covered glaciers. The framework comprises of integration of several CNNs architecture, in which different combinations of Landsat 8 multispectral bands (including thermal band), topographic and texture parameters are passed as input for feature extraction. The output of an ensemble of these CNNs is hybrid with random forest model for classification. The major pillars of the framework include: (1) technique for implementing topographic and atmospheric corrections (preprocessing), (2) the proposed hybrid of ensemble of CNNs and random forest classifier, and (3) procedures to determine whether a pixel predicted as snow is a cloud edge/shadow (post-processing). The proposed approach was implemented on the multispectral Landsat 8 OLI (operational land imager)/TIRS (thermal infrared sensor) data and Shuttle Radar Topography Mission Digital Elevation Model for the part of the region situated in Alaknanda basin, Uttarakhand, Himalaya. The proposed framework was observed to outperform (accuracy 96.79%) the current state-of-art machine learning algorithms such as artificial neural network, support vector machine, and random forest. Accuracy assessment was performed by means of several statistics measures (precision, accuracy, recall, and specificity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of random forest variable importance measures. Computational Statistics and Data Analysis, 52(4), 2249–2260.

    Article  Google Scholar 

  • Bishop, M. P., Bonk, R., Kamp, U., Jr., & Shroder, J. F., Jr. (2001). Terrain analysis and data modeling for alpine glacier mapping. Polar Geography, 25(3), 182–201.

    Article  Google Scholar 

  • Bishop, M. P., Shroder, J. F., Jr., & Hickman, B. L. (1999). SPOT panchromatic imagery and neural networks for information extraction in a complex mountain environment. Geocarto International, 14(2), 19–28.

    Article  Google Scholar 

  • Bolch, T., Buchroithner, M. F., Kunert, A., & Kamp, U. (2007). Automated delineation of debris-covered glaciers based on ASTER data. In Proceedings of the 27th EARSeL symposium geoinformation in Europe (pp. 4–6).

  • Bolch, T., & Kamp, U. (2006). Glacier mapping in high mountains using DEMs, landsat and ASTER data. Grazer Schriften der Geographie und Raumforschung, 41, 37–48.

    Google Scholar 

  • Brahmbhatt, R. M., Bahuguna, I., Rathore, B. P., Kulkarni, A. V., Shah, R. D., & Nainwal, H. C. (2012). Variation of snowline and mass balance of glaciers of Warwan and Bhut basins of western Himalaya using remote sensing technique. Journal of the Indian Society of Remote Sensing, 40(4), 629–637.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Buchroithner, M. F., & Bolch, T. (2007). An automated method to delineate the ice extension of the debris-covered glaciers at Mt. Everest based on ASTER imagery. In Proceedings of the 9th international symposium on high mountain remote sensing cartography, 2006 held in Graz, Austria.

  • Castelluccio, M., Poggi, G., Sansone, C., & Verdoliva, L. (2015). Land use classification in remote sensing images by convolutional neural networks. http://arxiv.org/abs/1508.00092.

  • Change, I. P. O. C. (2007). Climate change 2007: The physical science basis. Agenda, 6(07), 333.

    Google Scholar 

  • Chen, Y., Zhao, X., & Jia, X. (2015). Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2381–2392.

    Article  Google Scholar 

  • Foody, G. M., Campbell, N. A., Trodd, N. M., & Wood, T. F. (1992). Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogrammetric Engineering and Remote Sensing, 58(9), 1335–1341.

    Google Scholar 

  • Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1335–1343.

    Article  Google Scholar 

  • Gao, J. (2008). Digital analysis of remotely sensed imagery. New York: McGraw-Hill Professional.

    Google Scholar 

  • Ghosh, S., Pandey, A. C., Nathawat, M. S., & Bahuguna, I. M. (2014). Contrasting signals of glacier changes in Zanskar valley, Jammu & Kashmir, India using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 42(4), 817–827.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Kargel, J. S., Abrams, M. J., Bishop, M. P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H. H., Lee, E. M., Paul, F., & Rau, F. (2005). Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99(1), 187–219.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).

  • Kulkarni, A. V., & Alex, S. (2003). Estimation of recent glacial variations in Baspa Basin using remote sensing technique. Journal of the Indian Society of Remote Sensing, 31(2), 81–90.

    Article  Google Scholar 

  • Li, T., Zhang, J., & Zhang, Y. (2014). Classification of hyperspectral image based on deep belief networks. In 2014 IEEE international conference on image processing (ICIP) (pp. 5132–5136) IEEE.

  • Midhun, M. E., Nair, S. R., Prabhakar, V. T., & Kumar, S. S. (2014). Deep model for classification of hyperspectral image using restricted boltzmann machine. In Proceedings of the 2014 international conference on interdisciplinary advances in applied computing (p. 35) ACM.

  • Nemmour, H., & Chibani, Y. (2010). Support vector machines for automatic multi-class change detection in Algerian Capital using landsat TM imagery. Journal of the Indian Society of Remote Sensing, 38(4), 585–591.

    Article  Google Scholar 

  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222.

    Article  Google Scholar 

  • Paul, F., Huggel, C., & Kääb, A. (2004). Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4), 510–518.

    Article  Google Scholar 

  • Paul, F., Kääb, A., & Haeberli, W. (2007). Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change, 56(1), 111–122.

    Article  Google Scholar 

  • Platt, J. C., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass classification. In nips (Vol. 12, pp. 547–553).

  • Racoviteanu, A., & Williams, M. W. (2012). Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sensing, 4(10), 3078–3109.

    Article  Google Scholar 

  • Ren, J., Shen, Y., Ma, S., & Guo, L. (2004). Applying multi-class SVMs into scene image classification. In International conference on industrial, engineering and other applications of applied intelligent systems (pp. 924–934). Berlin: Springer.

  • Richter, R. (1998). Correction of satellite imagery over mountainous terrain. Applied Optics, 37(18), 4004–4015.

    Article  Google Scholar 

  • Shukla, A., Arora, M. K., & Gupta, R. P. (2010). Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7), 1378–1387.

    Article  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. In Advances in neural information processing systems (pp. 568–576).

  • Simpson, J. J., Jin, Z., & Stitt, J. R. (2000). Cloud shadow detection under arbitrary viewing and illumination conditions. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 972–976.

    Article  Google Scholar 

  • Simpson, J. J., & Stitt, J. R. (1998). A procedure for the detection and removal of cloud shadow from AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 880–897.

    Article  Google Scholar 

  • Simpson, J. J., Stitt, J. R., & Sienko, M. (1998). Improved estimates of the areal extent of snow cover from AVHRR data. Journal of Hydrology, 204(1–4), 1–23.

    Article  Google Scholar 

  • Singh, K. K., Kulkarni, A. V., & Mishra, V. D. (2010). Estimation of glacier depth and moraine cover study using ground penetrating radar (GPR) in the Himalayan region. Journal of the Indian Society of Remote Sensing, 38(1), 1–9.

    Article  Google Scholar 

  • Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., & Shahgedanova, M. (2007). Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Annals of Glaciology, 46(1), 195–203.

    Article  Google Scholar 

  • Thakur, P. K., Aggarwal, S. P., Arun, G., Sood, S., Kumar, A. S., Mani, S., & Dobhal, D. P. (2017). Estimation of snow cover area, snow physical properties and glacier classification in parts of Western Himalayas using C-band SAR data. Journal of the Indian Society of Remote Sensing, 45(3), 525–539.

    Article  Google Scholar 

  • Wang, L., Zhang, J., Liu, P., Choo, K. K. R., & Huang, F. (2017). Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Computing, 21(1), 213–221.

    Article  Google Scholar 

  • Whalley, W. B., Martin, H. E., & Gellatly, A. F. (1986). The problem of hidden ice in glacier mapping. Annals of Glaciology, 8, 181–183.

    Article  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Nijhawan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nijhawan, R., Das, J. & Balasubramanian, R. A Hybrid CNN + Random Forest Approach to Delineate Debris Covered Glaciers Using Deep Features. J Indian Soc Remote Sens 46, 981–989 (2018). https://doi.org/10.1007/s12524-018-0750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0750-x

Keywords

Navigation