Abstract
Geo-spatial mapping of soil organic carbon using regression kriging was performed for Lalo khala sub-watershed (a part of Solani watershed) located in western Uttar Pradesh, India. Soil organic carbon was predicted using eight predictor variables derived from the advanced space borne thermal emission and reflection radiometer satellite images and digital elevation model. The soil organic carbon was determined in 248 soil samples collected randomly within a 300 m2 grid overlaid on the study area. Out of the eight predictor variables used in simple regression, the normalized difference vegetation index has the maximum correlation with the soil organic carbon (0.64) followed by vegetation temperature condition index (0.60), brightness index (− 0.60), greenness index (0.57) and wetness index (0.51). Standardized principle components of the predictor variables were used in the prediction model so as to address the multicollinearity problem. The regression kriging predicted SOC value ranged from 0.19 to 1.93% with a mean value of 0.64 and standard deviation of 0.29. The SOC values were higher in upper piedmont with moderate forest followed by Siwalik hills while low values were found in the upper alluvial plains. The RMSE of the predicted SOC map was only 0.196 indicating the closeness of predicted values to the observed values. Regression kriging predicted SOC map can be used for spatial agriculture planning and consider as an ideal input for spatially distributed models. The higher efforts for its preparation are justified when quality, spatial distribution and accuracy are considered.
Similar content being viewed by others
References
Abrams, M., Hook, S., & Ramachandran, B. (1999). ASTER user handbook, version 2. Pasadena, CA: Jet Propulsion Laboratory.
Behrens, T., & Scholten, T. (2006). Digital soil mapping in Germany—A review. Journal of Plant Nutrition and Soil Science, 169(3), 434–443. https://doi.org/10.1002/jpln.200521962.
Bishop, T. F. A., & McBratney, A. B. (2001). A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103(1–2), 149–160. https://doi.org/10.1016/S0016-7061(01)00074-X.
Bourennane, H., & King, D. (2003). Using multiple external drifts to estimate a soil variable. Geoderma, 114(1–2), 1–18. https://doi.org/10.1016/S0016-7061(02)00338-5.
Chen, F., West, L. T., Kissel, D. E., Clark, R., & Adkins, W. (2008). Field-scale mapping of surface organic carbon with soil- landscape modeling. In Proceedings of the 8th international symposium on spatial accuracy assessment in natural resources and environmental sciences Shanghai, P. R. China, June 25–27 2008 (pp. 294–301).
Cheng, X. F., Shi, X. Z., Yu, D. S., Pan, X. Z., Wang, H. J., & Sun, W. X. (2004). Using GIS spatial distribution to predict soil organic carbon in subtropical china. Pedosphere, 14(4), 425–431.
Chhabra, A., Palria, S., & Dadhwal, V. K. (2003). Soil organic carbon pool in Indian forests. Forest Ecology and Management, 173(1–3), 187–199. https://doi.org/10.1016/S0378-1127(02)00016-6.
Crist, E. P., & Kauth, R. J. (1986). The Tasseled Cap De-Mystified. Photogrammetric Engineering and Remote Sensing, 52(1), 81–86.
Dewitte, O., Jones, A., Elbelrhiti, H., Horion, S., & Montanarella, L. (2012). Satellite remote sensing for soil mapping in Africa: An overview. Progress in Physical Geography, 36(4), 514–538.
Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley. ISBN 978-0-471-17082-2.
Dymond, C. C., Mladenoff, D. J., & Radeloff, V. C. (2002). Phenological differences in tasseled cap indices improve deciduous forest classification. Remote Sensing of Environment, 80(3), 460–472. https://doi.org/10.1016/S0034-4257(01)00324-8.
Forkuor, G., Hounkpatin, O. K. L., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in South-Western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 12(1), e0170478. https://doi.org/10.1371/journal.pone.0170478.
Franklin, S. E., Lavigne, M. B., Wulder, M. A., & McCaffrey, T. M. (2002). Large-area forest structure change detection: An example. Canadian Journal of Remote Sensing, 28(4), 588–592. https://doi.org/10.5589/m02-048.
Gessler, P. E., Moore, I. D., McKenzie, N. J., & Ryan, P. J. (1995). Soil-landscape modeling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, 9(4), 421–432. https://doi.org/10.1080/02693799508902047.
Gobin, A. (2000). Participatory and spatial modeling methods for land resources analysis. Ph.D. thesis, Katholik Universiteit Leuven.
Hamm, N. A. S., Finley, A. O., Schaap, M., & Stein, A. (2015). A spatially varying coefficient model for mapping air quality at the European scale. Atmospheric Environment, 102, 393–405. https://doi.org/10.1016/j.atmosenv.2014.11.043.
Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., MacMillan, R. A., Mendes de Jesus, J., Tamene, L., & Tondoh, J. E. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE, 10(6), e0125814. https://doi.org/10.1371/journal.pone.0125814.
Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers & Geosciences, 33(10), 1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001.
Hengl, T., Heuvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1–2), 75–93. https://doi.org/10.1016/j.geoderma.2003.08.018.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez, G. M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N, Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen B. (2017). SoilGrids250 m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748.
Higginbottom, T. P., & Symeonakis, E. (2014). Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sensing, 6(10), 9552–9575. https://doi.org/10.3390/rs6109552.
Huang, C., Wylie, B., Yang, L., Homer, C., & Zylstra, G. (2002). Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23(8), 1741–1748. https://doi.org/10.1080/01431160110106113.
Kumar, S. (2013). Soil organic carbon mapping at field and regional scales using GIS and remote sensing applications. Advances in Crop Science and Technology, 1, 2. https://doi.org/10.4172/2329-8863.1000e105.
Kumar, P., Pandey, P. C., Singh, B. K., Katiyar, S., Mandal, V. P., Rani, M., Tomar, V., & Patairiya, S. (2016). Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy. The Egyptian Journal of Remote Sensing and Space Sciences, 19(1), 109–123. https://doi.org/10.1016/j.ejrs.2015.12.003.
Kurgat, B. K., Golicha, D., Giese, M., Kuria, S. G., & Asch, F. (2014). Relationship between vegetation cover types and soil organic carbon in the rangelands of Northern Kenya. Livestock research for rural development, 26(9). Retrieved from http://www.lrrd.org/lrrd26/9/kurg26162.html.
Lane, P. W. (2002). Generalized linear model in soil science. European Journal of Soil Science, 53, 241–251. https://doi.org/10.1046/j.1365-2389.2002.00440.x.
Liu, L., Wang, H., Dai, W., Lei, X., Yang, X., & Li, X. (2014). Spatial variability of soil organic carbon in the forestlands of northeast China. Journal of Forestry Research, 25(4), 867–876. https://doi.org/10.1007/s11676-014-0533-3.
Malone, B. P., Jha, S. K., Minasny, B., & McBratney, A. B. (2016). Comparing regression-based digital soil mapping and multiple-point geostatistics for the spatial extrapolation of soil data. Geoderma, 262, 243–253. https://doi.org/10.1016/j.geoderma.2015.08.037.
McGrath, D., & Zhang, C. (2003). Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 18(10), 1629–1639. https://doi.org/10.1016/S0883-2927(03)00045-3.
Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443–452. https://doi.org/10.2136/sssaj1993.03615995005700020026x.
Mueller, T. G., & Pierce, F. J. (2003). Soil carbon maps. Soil Science Society of America Journal, 67(1), 258–267. https://doi.org/10.2136/sssaj2003.2580.
Mulder, V. L., de Bruin, S., Schaepman, M. E., & Mayr, T. R. (2011). The use of remote sensing in soil and terrain mapping—A review. Geoderma, 162(1–2), 1–19. https://doi.org/10.1016/j.geoderma.2010.12.018.
Nawar, S., Buddenbaum, H., & Hill, J. (2015). Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an Arid Region. Remote Sensing, 7, 1181–1205.
Parida, B. R. (2006). Analyzing the effect of severity and duration of agricultural drought on performance using Terra/MODIS satellite data and meteorological data. Ph.D. thesis, International Institute for Geo-information Science and Earth Observation Enschede, The Netherlands.
R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Robinson, T. P., & Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50(2), 97–108. https://doi.org/10.1016/j.compag.2005.07.003.
Sachs, J., Remans, R., Smukler, S., Winowiecki, L., Andelman, S. J., Cassman, K. G., Castle, D., DeFries, R., Denning, G., Fanzo, J., Jackson, L. E., Leemans, R., Lehmann, J., Milder, J. C, Naeem, S., Nziguheba, G., Palm, C. A, Pingali, P. L, Reganold, J. P, Richter, D. D, Scherr, S. J, Sircely, J., Sullivan, C., Tomich, T. P., & Sanchez, P. A. (2010). Monitoring the world’s agriculture. Nature, 466(7306), 558–560. https://doi.org/10.1038/466558a.
Schnitzer, M. (1982). Total carbon, organic matter, and carbon. In A. L. Page, R. H. Miller, & Keeney (Eds.), Methods of soil analysis. Part 2, 2nd Edn. Agronomy monograph (Vol. 9, pp. 539–577). Madison, WI: American Society of Agronomy.
Smith, A. M. S. (2007). How to convert ASTER radiance values to reflectance: An online guide. College of Natural Resources, University Idaho. Retrieved online from: www.cnrhome.uidaho.edu/default.aspx?pid=85984.
Sreenivas, K., Sujatha, G., Sudhir, K., Vamsi Kiran, D., Fyzee, M. A., Ravisankar, T., & Dadhwal V. K. (2014). Spatial assessment of soil organic carbon density through random forests based imputation. Journal of the Indian Society of Remote Sensing, 42(3), 577–587. https://doi.org/10.1007/s12524-013-0332-x.
Sumfleth, K., & Duttmann, R. (2008). Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators, 8(5), 485–501. https://doi.org/10.1016/j.ecolind.2007.05.005.
Thompson, J. A., & Kolka, R. K. (2005). Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Science Society of America Journal, 69, 1086–1093. https://doi.org/10.2136/sssaj2004.0322.
Triantafilis, J., Odeh, I. O. A., & McBratney, A. B. (2001). Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Science Society of America Journal, 65(3), 869–878. https://doi.org/10.2136/sssaj2001.653869x.
van der Meer, F. (2012). Remote-sensing image analysis and geostatistics. International Journal of Remote Sensing, 33(18), 5644–5676.
Velmurugan, A., & Carlos, G. G. (2009). Soil resource assessment and mapping using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 37(3), 511–525. https://doi.org/10.1007/s12524-009-0045-3.
Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and Normalized difference vegetation index products for monitoring drought in the southern great plains, USA. International Journal of Remote Sensing, 25(1), 61–72. https://doi.org/10.1080/0143116031000115328.
Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Chichester: Wiley. ISBN 978-0-470-02858-2.
Wiesmeier, M., Spörlein, P., Geuß, U., Hangen, E., Haug, S., Reischl, A., Schilling, B., von Lützow, M., & Kögel-Knabner, I. (2012). Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, 18, 2233–2245. https://doi.org/10.1111/j.1365-2486.2012.02699.x.
Yang, L., Jiao, Y., Fahmy, S., Zhu, A., Hann, S., Burt, J. E., et al. (2011). Updating conventional soil maps through digital soil mapping. Soil Science Society of America Journal, 75, 1044–1053. https://doi.org/10.2136/sssaj2010.0002.
Yarbrough, L. D. (2006). The legacy of the tasseled cap transform: A development of a more robust Kauth–Thomas transforms derivation. Dissertation, Geological Engineering, University of Mississippi.
Yaseen, N., Hamm, N. A. S., Woldai, T., Tolpekin, V. A., & Stein, A. (2013). Local interpolation of coseismic displacements measured by InSAR. International Journal of Applied Earth Observation and Geoinformation, 23, 1–17. https://doi.org/10.1016/j.jag.2012.12.002.
Zhong, B., & Xu, Y. J. (2009). Topographic effects on soil organic carbon in Louisiana watersheds. Environmental Management, 43(4), 662–672. https://doi.org/10.1007/s00267-008-9182-7.
Acknowledgements
The first author expresses his gratitude to Indian Institute of Remote Sensing (IIRS), Dehradun, India and the Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands for giving the opportunity to take up this study and all the assistance received from both the institute are thankfully acknowledged. He is grateful to NRSC and NASA for providing the satellite images. He is also extremely thankful to the reviewers, research advisory committee members, Dr. S.P. Aggarwal (Scientist SG, IIRS) and Bikash Ranjan Parida and Sekhar Lukose Kuriakose (ex-researchers from ITC) for their expert comments and guidance.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
About this article
Cite this article
Kumar, N., Velmurugan, A., Hamm, N.A.S. et al. Geospatial Mapping of Soil Organic Carbon Using Regression Kriging and Remote Sensing. J Indian Soc Remote Sens 46, 705–716 (2018). https://doi.org/10.1007/s12524-017-0738-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12524-017-0738-y