An Adaptive Supervised Nonlinear Feature Extraction for Hyperspectral Imagery Classification

  • Haimiao Ge
  • Liguo Wang
  • Cheng Li
  • Yanzhong Liu
  • Ruixin Chen
Research Article


In this paper, an improved version of locally linear Embedding is proposed. In the proposed method, spectral correlation angle is invited to describe the distance between data points, which is expected to fit the hyperspectral image (HSI). The neighborhood graph of the data points is constructed based on supervised method. Different from traditional supervised feature extraction methods, the weight factors, which are used to control the transform, are adaptively achieved. In this way, the input arguments of original algorithm are not increased. To justify the effectiveness of the proposed method, experiments are conducted on two HSIs. Results show that the proposed method can improve the separability of HSI especially in low dimensions.


Manifold learning Feature extraction Locally linear embedding (LLE) Hyperspectral image (HSI) 



The work is supported by the National Natural Science Foundation of China (Grant No. 61675051), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014 k-M07).


  1. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.CrossRefGoogle Scholar
  2. Comon, P. (1994). Independent component analysis: A new concept. Signal Processing, 36(3), 287–314.CrossRefGoogle Scholar
  3. Cox, M. A. A., & Cox, T. F. (1994). Multidimensional scaling. Journal of the Royal Statistical Society, 46(2), 1050–1057.Google Scholar
  4. De Carvalho, O. A., & Meneses, P. R. (2000). Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). Summaries of the 9th JPL Airborne Earth Science Workshop, 1, 65–74.Google Scholar
  5. Du, Y., Chang, C., Ren, H., Chang, C. C., & D'Amico, F. M. (2004). New hyperspectral discrimination measure for spectral characterization. Optical Engineering, 43(8), 1777–1786.CrossRefGoogle Scholar
  6. Geng, X., Zhan, D. C., & Zhou, Z. H. (2005). Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man and Cybernetics Society, 35(6), 1098.CrossRefGoogle Scholar
  7. Huang, R. S. (2014). Information technology in an improved supervised locally linear embedding for recognizing speech emotion. Advanced Materials Research, 2014(1014), 375–378.CrossRefGoogle Scholar
  8. Jollife, I. T. (1986). Principal component analysis. New York: Springer.CrossRefGoogle Scholar
  9. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., & Barloon, P. J. (1993). The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163.CrossRefGoogle Scholar
  10. Maesschalck, R. D., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 50(1), 1–18.CrossRefGoogle Scholar
  11. Ridder, D. D., & Duin, R. P. W. (2002). Locally Linear Embedding For Classification. Technical Report PH-2002-01, Pattern Recognition Group, Dept. of Imaging Science & Technology, Delft University of Technology, Delft, The Netherlands.Google Scholar
  12. Robila, S. (2005). An in vestigation of spectral metrics in hyperspectral image preprocessing for classification. In Annual Conference, Baltimaore, Maryland.Google Scholar
  13. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323.CrossRefGoogle Scholar
  14. Su, Z., Tang, B., Ma, J., & Deng, L. (2014). Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier. Measurement, 48(1), 136–148.CrossRefGoogle Scholar
  15. Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.CrossRefGoogle Scholar
  16. Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., & Koudas, N. (2002). Non-linear dimensionality reduction techniques for classification and visualization. In Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (pp. 645–651).Google Scholar
  17. Wang, L., Hao, S., Wang, Y., Lin, Y., & Wang, Q. (2014). Spatial-spectral information-based semisupervised classification algorithm for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3577–3585.CrossRefGoogle Scholar
  18. Wang, Q., Lin, J., & Yuan, Y. (2016). Salient band selection for hyperspectral image classification via manifold ranking. IEEE Transactions on Neural Networks and Learning Systems, 27(6), 1279.CrossRefGoogle Scholar
  19. Yang, J. L., Tang, L. B., Song, D., & Zhao, B. J. (2015). Incremental sample dimensionality reduction and recognition based on clustering adaptively manifold learning. XI Tong Gong Cheng Yu Dian Zi Ji Shu/systems Engineering and Electronics, 37(1), 199–205.Google Scholar
  20. Yuan, Y., Lin, J., & Wang, Q. (2016). Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization. IEEE Transactions on Cybernetics, 46(12), 2966.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2017

Authors and Affiliations

  • Haimiao Ge
    • 2
  • Liguo Wang
    • 1
  • Cheng Li
    • 2
  • Yanzhong Liu
    • 2
  • Ruixin Chen
    • 3
  1. 1.College of Information and Communication EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.College of Computer and Control EngineeringQiqihar UniversityQiqiharChina
  3. 3.Software DepartmentDaQing ENCH Innovation Technology CompanyDaqingChina

Personalised recommendations