Skip to main content
Log in

Relationship of Hyperspectral Reflectance Indices with Leaf N and P Concentration, Dry Matter Accumulation and Grain Yield of Wheat

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A field experiment was conducted on wheat during rabi season of year 2010–2011 and 2011–2012 at IARI, New Delhi to study the reflectance response of wheat to the nutrient omissions and identify the appropriate indices for assessing the nutrient deficiencies. Treatments comprised omission of N, P, K, S and Zn, 50% omission of N, P, and K, absolute control and optimum dose of nutrition (150–26.4–50–15–3 kg/ha N–P–K–S–Zn). The R2 were significant and higher for the hyperspectral indices than the broad band vegetation indices. GMI-I, RI-2 dB and RI-3d, GNDVI, VOGa, VOGb, VOGc, ND705, PRI, PSNDc and REIP had higher R2 (>0.61) for the leaf N concentration. The hyperspectral indices having highly significant correlation with leaf P concentration were PSSRc, GMI-1, ZM, RI-half, VOGa, VOGb, VOGc, mSR and REIP. Among the indices analysed PSSRc, GMI-I, VOGa, RI-2 dB, RI-3 dB, GNDVI, VOGb, VOGc and ND705 had almost a similar degree of relationship with DM accumulation with R2 values ranging from 0.70 to 0.73. However, REIP displayed a higher degree of relationship with leaf N concentration, drymatter accumulation and grain yield as indicated by R2 of 0.85, 0.81 and 0.95 (P = ≤0.01), respectively. It can be concluded from the study that among the hyperspectral indices REIP had a highly significant relationship with leaf N concentration, DM accumulation and grain yield. However, for leaf P concentration several hyperspectral indices viz PSSRc, GMI-1, ZM, RI-half, VOGa, VOGb, VOGc, mSR had though significant but almost similar R2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alt, C., Stutzel, H., & Kage, H. (2000). Modeling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis). Annals of Botany, 86, 963–973.

    Article  Google Scholar 

  • Ayala-Silva, T., & Beyl, C. A. (2005). Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research, 35(2), 305–317.

    Article  Google Scholar 

  • Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing, 19, 657–675.

    Article  Google Scholar 

  • Chang, K. W., Shen, Y., & Lo, J. C. (2005). Predicting rice yield using canopy reflectance measured at booting stage. Agronomy Journal, 97, 872–878.

    Article  Google Scholar 

  • Daughtry, C. H. T., Walthall, C. L., Kim, M. S., DE-Colstoun, E. B., & MC-Murtrey, J. E. (2000). Estimating leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Everitt, J. H., Richardson, A. J., & Gausman, H. W. (1985). Leaf reflectance–nitrogen–chlorophyll relations in buffelgrass. Photogrammetric Engineering and Remote Sensing Journal, 51, 463–466.

    Google Scholar 

  • Flowers, M., Weisz, R., & Heiniger, R. (2003). Quantitative approaches for using color infrared photography for assessing in season-nitrogen status in winter wheat. Agronomy Journal, 95, 133–146.

    Article  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22, 689–692.

    Article  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Article  Google Scholar 

  • Gnyp, M. L., Li, F., Hennig, S. D., Koppe, W., Jia, L., Chen, X., et al. (2008). Hyperspectral data analysis of N fertilization effects on winter wheat: A case study of Huimin County, North China Plain. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B7), 309–314.

    Google Scholar 

  • GOI (Government of India). (2014). Indian agriculture: Performance and challenges. The State of Indian Agriculture. Ministry of Agriculture (GOI) Publication, pp. 1–21.

  • Guo, S., Dang, T., & Hao, D. (2005). Effects of fertilization on wheat yield, NO3–N accumulation and soil water content in semi-arid area of China. Scientia Agricultura Sinica, 38, 754–760.

    Google Scholar 

  • Gupta, R. K., Vijayan, D., & Prasad, T. S. (2003). Comparative analysis of red edge hyperspectral indices. Advances in Space Research, 32, 2217–2222.

    Article  Google Scholar 

  • Guyot, G., Baret, F., & Major, D. J. (1988). High spectral resolution: Determination of spectral shifts between the red and the near infrared. Photogrammetry and Remote Sensing, 11, 750–760.

    Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542–553.

    Article  Google Scholar 

  • Hatfield, J. L., Gitelson, A. A., Schepers, J. S., & Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, 117–131.

    Article  Google Scholar 

  • Jackson, M. M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  • Jacob, J., & Lawlor, D. W. (1991). Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. Journal of Experimental Botany, 42, 1003–1011.

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666.

    Article  Google Scholar 

  • Kaur, R., Singh, B., Singh, M., & Think, S. K. (2015). Hyperspectral indices, correlation and regression models for estimating growth parameters of wheat genotypes. Journal of the Indian Society of Remote Sensing, 43(3), 551–558.

    Article  Google Scholar 

  • Lilles, T. M., & Kiefer, R. W. (1987). Remote sensing and image interpretation (2nd ed., pp. 1–612). New York: Wiley.

    Google Scholar 

  • Marschner, P. (1995). Marschner’s mineral nutrition of higher plants. London: Elsevier Publishers.

    Google Scholar 

  • Milton, N. M., Eiswerth, B. A., & Ager, C. M. (1991). Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants. Remote Sensing of Environment, 36, 121–127.

    Article  Google Scholar 

  • Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25, 3999–4014.

    Article  Google Scholar 

  • Osborne, S. L., Schepers, J. S., Francis, D. D., & Schlemmer, M. R. (2002). Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy Journal, 94, 1215–1221.

    Article  Google Scholar 

  • Penuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.

    Article  Google Scholar 

  • Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

    Article  Google Scholar 

  • Rouse, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In: 3rd Earth Resources Technology Satellite-1 Symposium, NASA SP-3 351, (pp. 301–317). Greenbelt, MD.

  • Sattar, A., Cheema, M. A., Farooq, M., Wahid, M. A., Wahid, A., & Babar, B. H. (2010). Evaluating the performance of wheat cultivars under late sown conditions. International Journal of Agriculture and Biology, 12(4), 1814–9596.

    Google Scholar 

  • Sembiring, H., Raun, W. R., Johnson, G. V., Stone, M. L., Solie, J. B., & Phillips, S. B. (1998). Detection of nitrogen and phosphorus nutrient status in winter wheat using spectral radiance. Journal of Plant Nutrition, 21(6), 1207–1232.

    Article  Google Scholar 

  • Serrano, L., Filella, I., & Penuelas, J. (2000). Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Science, 40, 723–731.

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Stone, M. L., Solie, J. B., Raun, W. R., Whiteny, R. W., Taylor, S. L., & Ringer, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of ASAE, 39, 1623–1631.

    Article  Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & Pauw, E. D. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.

    Article  Google Scholar 

  • Tisdale, S. L., Nelson, W. L., Beaton, J. D., & Havelin, J. L. (1997). Soil fertility and fertilizers. New Delhi: Prentice Hall of India, Private Limited.

    Google Scholar 

  • Vogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red-edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14, 1563–1575.

    Article  Google Scholar 

  • Walburg, G., Bauer, M. E., Daughtry, C. S. T., & Housley, T. L. (1982). Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agronomy Journal, 74, 677–683.

    Article  Google Scholar 

  • Wang, S., Zhu, Y., Jiang, H., & Cao, W. (2006). Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crop Research, 96, 224–234.

    Article  Google Scholar 

  • Xavier, A. C., Rudorff, B. F. T., Moreira, M. A., Alvarenga, B. S., de Freitas, B. S., Guilherme, J., et al. (2006). Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height. Scientia Agricola, 63(2), 130–138.

    Article  Google Scholar 

  • Yoder, B. J., & Pettigrew-Crosby, R. E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53, 199–211.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geosciences and Remote Sensing, 39, 1491–1507.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Berjón, A., López, L. R., Miller, J. R., Martín, P., Cachorro, V., et al. (2002). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. International Journal of Remote Sensing, 99, 271–287.

    Google Scholar 

  • Zhao, D., Reddy, K. R., Kakani, V. G., Read, J. J., & Koti, S. (2007). Canopy reflectance in cotton for growth assessment and lint yield prediction. European Journal of Agronomy, 26, 335–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashaq Hussain.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Sahoo, R.N., Kumar, D. et al. Relationship of Hyperspectral Reflectance Indices with Leaf N and P Concentration, Dry Matter Accumulation and Grain Yield of Wheat. J Indian Soc Remote Sens 45, 773–784 (2017). https://doi.org/10.1007/s12524-016-0633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0633-y

Keywords

Navigation