Skip to main content

Advertisement

Log in

Estimation of Sugar Beet Aboveground Biomass by Band Depth Optimization of Hyperspectral Canopy Reflectance

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Aboveground biomass of sugar beet influences tuber growth and sugar accumulation. Thus, accurate, rapid, and non-destructive technique of biomass estimation is important to optimize the crop management practices to attain the required aboveground biomass to support high tuber yields and optimal sugar content. The current research aimed to evaluate the performance of hyperspectral indices and band depth analysis, to remotely assess the aboveground biomass in sugar beet. The biomass and hyperspectral reflectance were collected at different growth stages in experimental and farmers’ fields. The model development was based on sugar beet plants sampled at various times during the growing period subject to seven nitrogen rates. The results showed that accuracy of biomass estimation was greater when using vegetation indices involving red edge bands (680–740 nm) as compared to that using the red light-based indices. Four types of optimized band depth information (band depth, band depth ratio, normalized band depth index, and band depth normalized to band area) involving the red edge further increased the accuracy of biomass estimation. This study demonstrated as the sugar beet biomass increased towards later growing period, biomass estimation using red light-based vegetation indices were less accurate as compared to that using band depth analysis in the vicinity of the red edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. International Conference on Precision Agriculture and Other Resource Management, MN, USA.

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  • Chen, P. F., Nicolas, T., Wang, J. H., Philippe, V., Huang, W. J., & Li, B. G. (2010). New index for crop canopy fresh biomass estimation. Spectroscopy and Spectral Analysis, 30(2), 512–517.

    Google Scholar 

  • Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing application. Journal of Geophysical Research Solid Earth, 89(B7), 6329–6340.

    Article  Google Scholar 

  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413.

    Article  Google Scholar 

  • Du, X., Meng, J. H., & Wu, B. F. (2011). Overview on monitoring crop biomass with remote sensing. Spectroscopy and Spectral Analysis, 30(11), 3098–3102.

    Google Scholar 

  • Fu, Y. Y., Wang, J. H., Yang, G. J., Song, X. Y., Xu, X. G., & Feng, H. K. (2013). Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements. Spectroscopy and Spectral Analysis, 33(5), 1315–1319.

    Google Scholar 

  • Fu, Y. Y., Yang, G. J., Wang, J. H., Song, X. Y., & Feng, H. K. (2014). Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Computers and Electronics in Agriculture, 100(2), 51–59.

    Article  Google Scholar 

  • Guyot, G., Baret, F., & Major, D. J. (1988). High spectral resolution: Determination of spectral shifts between the red and the near infrared. International Archives of Photogrammetry and Remote Sensing, 11, 750–760.

    Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.

    Article  Google Scholar 

  • He, C., Feng, Z. K., Han, X., Sun, M. Y., Gong, Y. X., Gao, Y., & Dong, B. (2012). The inversion processing of vegetation biomass along Yongding River based on multispectral information. Spectroscopy and Spectral Analysis, 32(12), 3353–3357.

    Google Scholar 

  • Herrmann, I., Karnieli, A., Bonfil, D. J., Cohen, Y., & Alchanatis, V. (2010). SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing, 31(19), 5127–5143.

    Article  Google Scholar 

  • Huang, C. Y., Wang, D. W., Cao, L. P., Zhang, Y. X., Ren, L. T., & Cheng, C. (2007). Models for estimating cotton aboveground fresh biomass using hyperspectral data. Transactions of the Chinese Society of Agricultural Engineering, 23(3), 131–135.

    Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of radiation on the forest floor. Ecology, 50, 663–666.

    Article  Google Scholar 

  • Kokaly, R. F., & Clark, R. N. (1999). Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67(3), 267–287.

    Article  Google Scholar 

  • Li, Y. L., Li, S. K., Bai, Y. L., Xie, R. Z., & Gong, Y. M. (2007). Spectral red edge parametric variation and correlation analysis with N content in winter wheat. Remote Sensing Technology and Application, 22(1), 1–7.

    Google Scholar 

  • Li, F., Miao, Y., Chen, X., Zhang, H., Jia, L., & Bareth, G. (2010). Estimating winter wheat biomass and nitrogen status using an active crop sensor. Intelligent Automation and Soft Computing, 16(6), 1219–1228.

    Google Scholar 

  • Li, F., Miao, Y. X., Feng, G. H., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S. L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157(2), 111–123.

    Article  Google Scholar 

  • Li, F., Mistele, B., Hu, Y. C., Yue, X. L., Yue, S. C., Miao, Y. X., Chen, X., Cui, Z., Meng, Q., & Schmidhalter, U. (2012). Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crops Research, 138(3), 21–32.

    Article  Google Scholar 

  • Li, F., Mistele, B., Hu, Y., Chen, X., & Schmidhalter, U. (2013). Reflectance estimation of canopy nitrogen content in winter wheat using optimized hyperspectral spectral indices and partial least squares regression. European Journal of Agronomy, 52(1), 198–209.

    Google Scholar 

  • Liu, Z., Huang, J., Wu, X., Dong, Y., Wang, F., & Liu, P. (2006). Hyperspectral remote sensing estimation models for the grassland biomass. Transactions of the Chinese Society of Agricultural Engineering, 22(2), 111–115.

    Article  Google Scholar 

  • Mistele, B., & Schmidhalter, U. (2010). Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat. Agronomy Journal, 102(2), 499–506.

    Article  Google Scholar 

  • Mutanga, O., & Skidmore, A. K. (2004). Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. International Journal of Applied Earth Observation and Geoinformation, 5(2), 87–96.

    Article  Google Scholar 

  • Pearson, R. L., & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. Proceedings of the Eighth International Symposium on Remote Sensing of Environment (pp. 1355–1379). Colorado, Ann Arbor: Pawnee National Grasslands.

  • Qiao, X., Ma, X., Zhang, X. C., & Liang, L. S. (2008). Response of coronary spectrum on chlorophyll and K information of soy. Transactions of the Chinese Society for Agricultural Machinery, 39(4), 108–111.

    Google Scholar 

  • Ren, H. R., & Zhou, G. S. (2014). Estimating aboveground green biomass in desert steppe using band depth indices. Biosystems Engineering, 127, 67–78.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plain with ERTS. NASA/GSFC, Type III, Final Report, Greenbelt MD, USA, 351, 309–317.

    Google Scholar 

  • Tian, Y. C., Yao, X., Yang, J., Caoa, W. X., Hannaway, D. B., & Zhu, Y. (2011). Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground and space-based hyperspectral reflectance. Field Crops Research, 120(2), 299–310.

    Article  Google Scholar 

  • Tong, Q. X., Zhang, B., & Zheng, L. F. (2006). Hyperspectral remote sensing technology and application principle (pp. 129–289). Beijing: Science Press.

    Google Scholar 

  • Wang, X. Y., Guo, Y. G., & He, J. (2014a). Estimation of above-ground biomass of grassland based on multi-source remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 30(11), 159–166.

    Google Scholar 

  • Wang, R. H., Song, X. Y., Li, Z. H., Yang, G. J., Guo, W. S., Tan, C. W., & Chen, L. P. (2014b). Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 30(19), 191–198.

    Google Scholar 

  • Wu, J. J., Gao, Z. H., Li, Z. Y., Wang, H. Y., Pang, Y., Sun, B., Li, C. L., Li, X. Z., & Zhang, J. X. (2014). Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image. Spectroscopy and Spectral Analysis, 34(3), 751–756.

    Google Scholar 

  • Xu, X. J., Du, H. Q., Zhou, G. M., & Fan, W. Y. (2008). Review on correlation analysis of independent variables in estimation models of vegetation biomass based on remote sensing. Remote Sensing Technology and Application, 23(2), 239–247.

    Google Scholar 

  • Zhao, C., Wang, Z., Wang, J., Huang, W., & Guo, T. (2011). Early detection of canopy nitrogen deficiency in winter wheat (Triticum aestivum L.) based on hyperspectral measurement of canopy chlorophyll status. New Zealand Journal of Crop and Horticultural Science, 39(4), 251–262.

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by National Natural Science Foundation of China (41261084) and special fund for the Modern Agricultural Industry Technology System of China (CARS-210402).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Ziyi Zhang.

Additional information

Haiqing Tian and Shude Shi contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Shi, S., Wang, H. et al. Estimation of Sugar Beet Aboveground Biomass by Band Depth Optimization of Hyperspectral Canopy Reflectance. J Indian Soc Remote Sens 45, 795–803 (2017). https://doi.org/10.1007/s12524-016-0632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0632-z

Keywords