Skip to main content

Advertisement

Log in

Study on Regional Variations of Aerosol Loading Using Long Term Satellite Data Over Indian Region

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Satellite-based measurements of aerosols are one of the most effective ways to understand the role of aerosols in climate in terms of spatial and temporal variability. In the present study, we attempted to analyse spatial and temporal variations of satellite derived aerosol optical depth (AOD) over Indian region using moderate resolution imaging spectrometer over a period of 2001–2011. Due to its vast spatial extent, Indian region and adjacent oceanic regions are divided into different zones for analysis. The land mass is sub divided into five different zones such as Indo Gangetic Plain (IGP), Indian mainland, North Eastern India (NE), South India-1 (SI-1), South India-2 (SI-2). Oceanic areas are divided into Arabian Sea and Bay of Bengal. Arabian Sea is further divided as three zones viz. Northern AS (NAS), Central AS (CAS) and Eastern AS (EAS) zones. Bay of Bengal is divided as North BoB (NBoB), West BoB (WBoB), Central BoB (CBoB), and East BoB (EBoB). The study revealed that among all the land regions, IGP showed the highest peak AOD value (0.52 ± 0.17) while SI-2 showed the lower values of AOD in all the months compared to all India average. The maximum AOD is observed during premonsoon season for all regions. During the winter, average AOD levels were substantially lower than the summer averages. Peak of aerosol loading (0.35 ± 0.159) is observed in March over NE region, whereas in all other regions, peak is observed during May. Frequency distribution of long term AOD (<0.2, 0.3–0.5, >0.5) shows a shift of frequency distribution of AOD from <0.3 to 0.3–0.5 during the study period in all regions except IGP. In IGP shift of frequency of AOD values occurs from 0.3–0.5 to >0.5. Oceanic areas also shows seasonal variation of AOD. Over Arabian Sea, high AOD values with greater variations were observed in summer monsoon season while in Bay of Bengal it is observed during winter monsoon. This is due to the high wind speed prevailing in Arabian Sea during monsoon season which results in production of more sea salt aerosol. Highest AOD values are observed over NAS during monsoon season and over NBOB during winter season. Lowest AOD values with its lower variations observed in both the central region of Arabian Sea and Bay of Bengal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aloysius, M., Sijikumar, S., Prijith, S. S., Mohan, M., & Parameswaran, K. (2011). Role of dynamics in the advection of aerosols over the Arabian Sea along the west coast of peninsular India during pre-monsoon season: A case study based on satellite data and regional climate model. Journal of Earth System Science, 120(2), 269–279.

    Article  Google Scholar 

  • Andreae, M. O., & Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1–2), 13–41. doi:10.1016/j.earscirev.2008.03.001.

    Article  Google Scholar 

  • Asnani, G. C. (1993). Tropical meteorology (Vol. 1 and 2). Pashan: Indian Institute of Tropical Meteorology.

    Google Scholar 

  • Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P. K., Darshan Singh. (2013). Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. Journal of Geophysical Research: Atmospheres, 118(20), 11711–11806.

    Google Scholar 

  • Badarinath, K. V. S., Latha, K. M., Kiran Chand, T. R., Gupta, P. K., Ghosh, A. B., Jain, S. L., et al. (2004). Characterization of aerosols from biomass burning—a case study from Mizoram (Northeast), India. Chemosphere, 54(2), 167–175.

    Article  Google Scholar 

  • Blanchard, D. C. (1963). The electrification of the atmosphere by particles from bubbles in the sea. Progress in Oceanography, 1, 73–202.

    Article  Google Scholar 

  • Blanchard, D. C., & Woodcock, A. H. (1980). The production, concentration, and vertical distribution of the sea-salt aerosol. Annals of the New York Academy of Sciences, 338(1), 330–347.

    Article  Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A, Jr., Hansen, J. E., Hofmann, D.J. (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430.

    Article  Google Scholar 

  • Chelani, A. B. (2015). Study of temporal variations in aerosol optical depth over central India. International Journal of Environmental Protection, 5(1), 25–31.

    Article  Google Scholar 

  • Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., Nakajima, T. (2002). Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. Journal of the Atmospheric Sciences, 59(3), 461–483.

    Article  Google Scholar 

  • Chung, S. H. (2005). Climate response of direct radiative forcing of anthropogenic black carbon. Journal of Geophysical Research, 110(D11), 1–25. doi:10.1029/2004JD005441.

    Article  Google Scholar 

  • Dey, S., & Di Girolamo, L. (2010). A climatology of aerosol optical and microphysical properties over the Indian subcontinent from nine years (2000–2008) of multiangle imaging spectroRadiometer (MISR) data. Journal of Geophysical Research, 115, D15204. doi:10.1029/2009JD013395.

    Article  Google Scholar 

  • Dey, S., Tripathi, S. N., Singh, R. P., & Holben, B. N. (2005). Seasonal variability of the aerosol parameters over Kanpur, an urban site in Indo-Gangetic basin. Advances in Space Research, 36(5), 778–782.

    Article  Google Scholar 

  • Di Girolamo, L., Bond, T. C., Bramer, D., Diner, D. J., Fettinger, F., Kahn, R., Martonchik, J.V., Ramana, M. V., Ramanathan, V., Rasch, P. J. (2004). Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophysical Reseach Letters, 31, L23115. doi:10.1029/2004GL021273.

    Google Scholar 

  • Eyring, V., Köhler, H. W., van Aardenne, J., & Lauer, A. (2005). Emissions from international shipping: 1. The last 50 years. Journal Geophysical Research, 110, D17305. doi:10.1029/2004JD005619.

    Article  Google Scholar 

  • Gharai, B., Jose, S., & Mahalakshmi, D. V. (2013). Monitoring intense dust storms over the Indian region using satellite data—a case study. International Journal of Remote Sensing, 34(20), 7038–7048.

    Article  Google Scholar 

  • Habib, G., Venkataraman, C., Shrivastava, M., Banerjee, R., Stehr, J. W., & Dickerson, R. R. (2004). New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India. Global Biogeochemical Cycles, 18(3), GB3007. doi:10.1029/2003GB002157.

    Article  Google Scholar 

  • Henriksson, S. V., Laaksonen, A., Kerminen, V. M., Räisänen, P., Järvinen, H., Sundström, A. M., de Leeuw, G. (2011). Spatial distributions and seasonal cycles of aerosols in India and China seen in global climate-aerosol model. Atmospheric Chemistry and Physics, 11(15), 7975–7990.

    Article  Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 1535). Cambridge and New York: Cambridge University Press. doi:10.1017/CBO9781107415324.

  • Jha, B., & Krishnamurthi, T. N. (1998). Real-time meteorological reanalysis atlas during pre-INDOEX field phase-1998. Report 98-08, INDOEX Publication 20.

  • Kalapureddy, M. C. R., Kaskaoutis, D. G., Raj, P. E., Devara, P. C. S., Kambezidis, H. D., Kosmopoulos, P. G., Nastos, P.T. (2009). Identification of aerosol type over the Arabian Sea in the pre-monsoon season during the ICARB campaign. Journal of Geophysical Research, 114, D17203.

    Article  Google Scholar 

  • Kant, Y., Sharma, M. C., Ghosh, A. B., Gupta, P. K., Prasad, V. Krishna, Badarinath, K. V. S., Mitra, A. P. (2000). Impact of aerosol optical depth on UV-B radiation-a case study over Eastern Ghats. Indian Journal of Radio & Space Physics, 29(A), 71–80.

    Google Scholar 

  • Kaskaoutis, D. G., Kharol, S. K., Sinha, P. R., Singh, R. P., Badarinath, K. V. S., Mehdi, W., Sharma, M. (2011). Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmospheric: Measurement: Techniques: Discussion, 4, 5275–5323. doi:10.5194/amtd-4-5275-2011.

    Article  Google Scholar 

  • Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres (1984–2012), 102(D14), 17051–17067.

    Article  Google Scholar 

  • Kharol, S. K., Badarinath, K. V. S., & Roy, P. S. (2008). Studies on emissions from forest fires using multi-satellite datasets over northeast region of India. The international archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XXXVII. Part B8. Beijing.

  • Kharol, S. K., Badarinath, K. V. S., Sharma, A. R., Kaskaoutis, D. G., & Kambezidis, H. D. (2011). Multiyear analysis of Terra/Aqua MODIS aerosol optical depth and ground observations over 15 tropical urban region of Hyderabad, India. Atmospheric Environment, 45, 1532–1542.

    Article  Google Scholar 

  • Kishcha, P., Starobinets, B., Kalashnikova, O., & Alpert, P. (2011). Aerosol optical thickness trends and population growth in the Indian subcontinent. International Journal of Remote Sensing, 32(24), 9137–9149.

    Article  Google Scholar 

  • Lau, K. M., & Kim, K. M. (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33(21), L21810. doi:10.1029/2006GL027546.

    Article  Google Scholar 

  • Li, F., & Ramanathan, V. (2002). Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. Journal of Geophysical Research: Atmospheres (1984–2012), 107(D16), AAC-2.

    Google Scholar 

  • Moorthy, K. K., Babu, S. S., & Satheesh, S. K. (2003). Aerosol spectral optical depths over the Bay of Bengal: Role of transport. Geophysical Research Letters, 30(5), 1249. doi:10.1029/2002GL016520.

    Article  Google Scholar 

  • Moorthy, K. K., & Saha, A. (2000). Aerosol study during INDOEX: Observation of enhanced aerosol activity over the mid Arabian Sea during the northern winter. Journal of Atmospheric and Solar-Terrestrial Physics, 62(1), 65–72.

    Article  Google Scholar 

  • Moorthy, K. K., Satheesh, S. K., Babu, S. S., & Dutt, C. B. S. (2008). Integrated campaign for aerosols, gases and radiation budget (ICARB): An overview. Journal of Earth System Science, 117(1), 243–262.

    Article  Google Scholar 

  • Moorthy, K. K., Sunilkumar, S. V., Pillai, P. S., Parameswaran, K., Nair, P. R., Ahmed, Y. N., Sunilkumar, S. V., Pillai, P. S., Parameswaran, K., Nair, P. R., Ahmed, Y. N., Ramgopal, k., Narasimhulu, K., Reddy, R. R., Vinoj, V., Satheesh, S. K., Niranjan, K., Rao, B. M., Brahmanandam, P. S., Saha, A., Badarinath, K. V. S., Kiranchand, T. R., Latha, K. M. (2005). Wintertime spatial characteristics of boundary layer aerosols over peninsular India. Journal Geophysical Research, 110, D08207. doi:10.1029/2004JD005520.

    Article  Google Scholar 

  • Niranjan, K., Sreekanth, V., Madhavan, B. L., Devi, T. A., & Spandana, B. (2008). Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of India during ICARB—Signatures of transport onto Bay of Bengal. Journal of Earth System Science, 117(S1), 421–427.

    Article  Google Scholar 

  • O’Dowd, C. D., & Smith, M. H. (1993). Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind-speed-related submicron sea-salt aerosol production. Journal of Geophysical Research: Atmospheres (1984–2012), 98(D1), 1137–1149.

    Article  Google Scholar 

  • Padma Kumari, B., Londhe, A. L., Daniel, S., & Jadhav, D. B. (2007). Observational evidence of solar dimming: Offsetting surface warming over India. Geophysical Research Letters, 34(21), L21810. doi:10.1029/2007GL031133.

    Article  Google Scholar 

  • Parameswaran, K., Nair, S. K., & Rajeev, K. (2008). Impact of aerosols from the Asian Continent on the adjoining oceanic environments. Journal of Earth System Science, 117(1), 83–102.

    Article  Google Scholar 

  • Peters, K., Quaas, J., Stier, P., & Graßl, H. (2014). Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data. Tellus B, 66, 24054. doi:10.3402/tellusb.v66.24054.

    Article  Google Scholar 

  • Prasad, A. K., Singh, R. P., & Singh, A. (2004). Variability of aerosol optical depth over Indian subcontinent using MODIS data. Journal of the Indian Society of Remote Sensing, 32(4), 313–316.

    Article  Google Scholar 

  • Prasad, A. K., Singh, R. P., & Singh, A. (2006). Seasonal climatology of aerosol optical depth over the Indian subcontinent: Trend and departures in recent years. International Journal of Remote Sensing, 27(12), 2323–2329.

    Article  Google Scholar 

  • Rajput, P., Sarin, M., & Rengarajan, R. (2011). High-precision GC-MS analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) and isomer ratios from biomass burning emissions. Journal of Environmental Protection, 2(04), 445.

    Article  Google Scholar 

  • Ramachandran, S., Kedia, S., & Srivastava, R. (2012). Aerosol optical depth trends over different regions of India. Atmospheric Environment, 49, 338–347.

    Article  Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A.D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., Valero, F. P. J. (2001). Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research: Atmospheres (1984–2012), 106(D22), 28371–28398.

    Article  Google Scholar 

  • Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., et al. (2008). Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research, 113, D14S07. doi:10.1029/2007JD009661.

    Article  Google Scholar 

  • Sarkar, S., Chokngamwong, R., Cervone, G., Singh, R. P., & Kafatos, M. (2006). Variability of aerosol optical depth and aerosol forcing over India. Advances in Space Research, 37(12), 2153–2159.

    Article  Google Scholar 

  • Satheesh, S. K., Krishna Moorthy, K., & Das, I. (2001). Aerosol spectral optical depths over the Bay of Bengal, Arabian Sea and Indian Ocean. Current Science, 81(12), 1617–1625.

    Google Scholar 

  • Satheesh, S. K., & Srinivasan, J. (2002). Enhanced aerosol loading over Arabian Sea during the pre-monsoon season: Natural or anthropogenic? Geophysical Research Letters, 29(18), 1–21.

    Article  Google Scholar 

  • Singh, R. P., Dey, S., Tripathi, S. N., Tare, V., & Holben, B. (2004). Variability of aerosol parameters over Kanpur, northern India. Journal of Geophysical Research: Atmospheres, 109(D23), D23206. doi:10.1029/2004JD004966.

    Article  Google Scholar 

  • Stanhill, G., & Cohen, S. (2001). Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107, 255–278.

    Article  Google Scholar 

  • Tindale, N. W., & Pease, P. P. (1999). Aerosols over the Arabian Sea: Atmospheric transport pathways and concentrations of dust and sea salt. Deep Sea Research Part II: Topical Studies in Oceanography, 46(8), 1577–1595.

    Article  Google Scholar 

  • Tripathi, S. N., Dey, S., Tare, V., & Satheesh, S. K. (2005). Aerosol black carbon radiative forcing at an industrial city in northern India. Geophysical Research Letters, 32(8), L08802. doi:10.1029/2005GL022515.

    Article  Google Scholar 

  • Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., & Friedlander, S. K. (2005). Residential biofuels in South Asia: Carbonaceous aerosol emissions and climate impacts. Science, 307(5714), 1454–1456.

    Article  Google Scholar 

  • Verma, S., Venkataraman, C., & Boucher, O. (2011). Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions. Atmospheric Environment, 45(26), 4398–4407.

    Article  Google Scholar 

  • Warren, A. (1989). Aeolian dust and dust deposits by Kenneth Pye, Academic press, London, 1987. No. of pages: 334. ISBN 0–12–568690–0; 0–12–568691-9 (paperback). Earth Surface Processes and Landforms, 14(8), 755. doi:10.1002/esp.3290140813.

    Article  Google Scholar 

  • Wild, M. (2009). Global dimming and brightening: A review. Journal of Geophysical Research, 114, 1–31. doi:10.1029/2008JD011470.

    Google Scholar 

  • Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., et al. (2005). From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 308(5723), 847–850.

    Article  Google Scholar 

  • Zhang, J., & Reid, J. S. (2010). A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmospheric Chemistry and Physics, 10(22), 10949–10963. doi:10.5194/acp-10-10949-2010.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, NRSC, for encouraging this work. First author acknowledge Professors at Cochin University of Science and Technology for constant support from them. This work is part of dissertation of first author for partial fulfilling of her M. Tech. degree. We also thank all the principal investigators and support staff of MODIS mission for their support in providing the necessary data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Midhuna.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midhuna, T.M., Gharai, B., Jose, S. et al. Study on Regional Variations of Aerosol Loading Using Long Term Satellite Data Over Indian Region. J Indian Soc Remote Sens 45, 685–697 (2017). https://doi.org/10.1007/s12524-016-0622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0622-1

Keywords

Navigation