Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides,
9(1), 93–106.
Article
Google Scholar
Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology,
73(3), 247–265.
Article
Google Scholar
Alkhasawneh, M., Ngah, U. K., Tay, L. T., Isa, N. A. M., & Al-Batah, M. S. (2014). Modeling and testing landslide hazard using decision tree. Journal of Applied Mathematics,. doi:10.1155/2014/929768.
Google Scholar
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling and Software,
40, 1–20.
Article
Google Scholar
Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology,
44(8), 949–962. doi:10.1007/s00254-003-0838-6.
Article
Google Scholar
Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., & Lee, S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology,
124, 12–23. doi:10.1016/j.enggeo.2011.09.011.
Article
Google Scholar
Chung, C.-J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards,
30(3), 451–472.
Article
Google Scholar
Coe, J. A., Michael, J., Crovelli, R., & Savage, W. (2000). Preliminary map showing landslide densities, mean recurrence intervals, and exceedance probabilities as determined from historic records. Washington: Seattle.
Google Scholar
Cohen, W. W. (1995) Fast effective rule induction. In Proceedings of the twelfth international conference on machine learning (pp. 115–123).
Corominas, J., & Moya, J. (2008). A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology,
102(3), 193–213.
Article
Google Scholar
Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. U.S. Geological Survey Open File Report 00-249. (p. 23).
Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology,
42(3), 213–228. doi:10.1016/S0169-555X(01)00087-3.
Article
Google Scholar
Gao, Y., & Wang, Y. (2006). Boosting in random subspace for face recognition. In Huang, D.-S., & Irwin, G. W. (Eds.), Intelligent computing in signal processing and pattern recognition (pp. 172–181). Berlin: Springer.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics,
98(3–4), 239–267.
Article
Google Scholar
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides,
5(1), 3–17.
Article
Google Scholar
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology,
72(1), 272–299.
Article
Google Scholar
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8), 832–844.
Article
Google Scholar
Hühn, J., & Hüllermeier, E. (2009). FURIA: An algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery,
19(3), 293–319. doi:10.1007/s10618-009-0131-8.
Article
Google Scholar
Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides,
11(3), 425–439. doi:10.1007/s10346-013-0391-7.
Article
Google Scholar
Kjekstad, O., & Highland, L. (2009). Economic and social impacts of landslides. In Sassa, K., & Canuti, P. (Eds.), Landslides—Disaster risk reduction (pp. 573–587). Berlin: Springer.
Kleinberg, E. (1990). Stochastic discrimination. Annals of Mathematics and Artificial Intelligence,
1(1), 207–239.
Article
Google Scholar
Larsen, M. C., & Simon, A. (1993). A rainfall intensity–duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler. Series A. Physical Geography, 75, 13–23.
Article
Google Scholar
NCEP. (2014). Global weather data for SWAT. http://globalweather.tamu.edu/home
Onan, A. (2015). Classifier and feature set ensembles for web page classification. Journal of Information Science,. doi:10.1177/0165551515591724.
Google Scholar
Pham, B. T., Tien Bui, D., Dholakia, M. B., Prakash, I., & Pham, H. V. (2016a). A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotechnical and Geological Engineering,
34(1), 1–18. doi:10.1007/s10706-016-9990-0.
Article
Google Scholar
Pham, B. T., Tien Bui, D., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2015). Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology,
122(3–4), 1–19. doi:10.1007/s00704-015-1702-9.
Google Scholar
Pham, B. T., Tien Bui, D., Prakash, I., & Dholakia, M. B. (2016b). Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Natural Hazards,. doi:10.1007/s11069-016-2304-2.
Google Scholar
Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science,
2, 349–369.
Article
Google Scholar
Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences,
51, 350–365. doi:10.1016/j.cageo.2012.08.023.
Article
Google Scholar
Saez, J. L., Corona, C., Stoffel, M., Schoeneich, P., & Berger, F. (2012). Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology,
138(1), 189–202.
Article
Google Scholar
Terlien, M. T., Van Westen, C. J., & van Asch, T. W. (1995). Deterministic modelling in GIS-based landslide hazard assessment. In Carrara, A., & Guzzetti, F. (Eds.), Geographical information systems in assessing natural hazards (pp. 57–77). Berlin: Springer.
Tien Bui, D., Pham, B. T., Nguyen, Q. P., & Hoang, N.-D. (2016). Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: A case study in Central Vietnam. International Journal of Digital Earth, 9(11), 1–21.
Article
Google Scholar
Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, Ø. B. (2013). Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Natural Hazards,
66(2), 707–730.
Article
Google Scholar
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Book
Google Scholar
Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice. Paper presented at the UNESCO Press, Paris.
Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences,
6(8), 2873–2888.
Article
Google Scholar