Skip to main content

Automatic Detection of Oil Spill Disasters Along Gulf of Mexico Using RADARSAT-2 SAR Data

Abstract

In this work, the genetic algorithm is utilised for automatic detection of oil spills under wind speed conditions larger than 20 ms−1. The procedure is implemented using sequences of RADARSAT-2 SAR ScanSAR Narrow single beam data acquired in the Gulf of Mexico. The study demonstrates that implementing crossover allows for generation of accurate oil spills pattern. This conclusion is confirmed by the receiver–operating characteristic (ROC) curve. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the ROC curve and the no-discrimination line of 85 %, which is greater than that of other surrounding environmental features. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill detection and surveying under wind speed larger than 20 ms−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Brekke, C., & Solberg, A. (2005). Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95, 1–13.

    Article  Google Scholar 

  • Choudhury, I., & Chakraborty, M. (2006). SAR signature investigation of rice crop using RADARSAT data. International Journal of Remote Sensing, 27, 519–534.

    Article  Google Scholar 

  • Davis, L. (1991). The handbook of genetic algorithms. New York: Van Nostran Reingold.

    Google Scholar 

  • Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., & Trivero, P. (2000). Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21, 3561–3566.

    Article  Google Scholar 

  • Frate, F. D., Petrocchi, A., Lichtenegger, J., & Calabresi, G. (2000). Neural networks for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38, 2282–2287.

    Article  Google Scholar 

  • Garcia-Pineda, O., MacDonald, I., Hu, C., Svejkovsky, J., Hess, M., Dukhovskoy, D., & Morey, S. L. (2013a). Detection of floating oil anomalies from the Deepwater Horizon oil spill with synthetic aperture radar. Oceanography, 26(2), 124–137. doi:10.5670/oceanog.2013.38.

    Article  Google Scholar 

  • Garcia-Pineda, O., MacDonald, I. R., Li, X., Jackson, C. R., & Pichel, W. G. (2013b). Oil spill mapping and measurement in the Gulf of Mexico with textural classifier neural network algorithm (TCNNA). Selected Topics in Applied Earth Observations and Remote Sensing, 99, 1–9.

    Google Scholar 

  • Ivanov, A., He, M., & Fang, M. Q. (2002). Oil spill detection with the RADARSAT SAR in the waters of the Yellow and East Sea: A case study. In CD of 23rd Asian conference on remote sensing, Vol. 1, 13–17 November 2002, Nepal, Asian Remote Sensing Society, Japan, pp. 1–8.

  • Kahlouche, S., Achour, K., & Benkhelif, M. (2002). A new approach to image segmentation using genetic algorithm with mathematical morphology: In Proceedings of the 2002 WSEAS international conferences, Cadiz, Spain, 12–16 June 2002. www.wseas.us/e-library/conferences/spain2002/papers/443-164.pdf,1-5.

  • Marghany, M. (2001). RADARSAT automatic algorithms for detecting coastal oil spill pollution. International Journal of Applied Earth Observation and Geoinformation, 3(2), 191–196.

    Article  Google Scholar 

  • Marghany, M. (2013). Genetic algorithm for oil spill automatic detection from envisat satellite data. In B. Murgante, S. Misra, M. Carlini, C. M. Torre, H. Q. Nguyen, D. Taniar, B. O. Apduhan, & O. Gervasi (Eds.), Computational science and its applicationsICCSA 2013, Vol. 7972, pp. 587–598. Berlin, Heidelberg: Springer.

  • Marghany, M., & Hashim, M. (2011). Comparative algorithms for oil spill detection from multi mode RADARSAT-1 SAR satellite data. Lecture notes in computer science. In D. Taniar et al. (Eds.), Computational science and its applicationsICCSA 2011, Vol. 6783, pp. 318–329. Berlin, Heidelberg: Springer.

  • Matkan, A. A., Hajeb, M., & Azarakhsh, Z. (2013). Oil spill detection from SAR image using SVM based classification. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, SMPR, 1, W3.

    Google Scholar 

  • Maurizio, M., Ferdinando, N., Brown, C. E., Holt, B., Li, X., Pichel, W., & Shimada, M. (2012). Polarimetric synthetic aperture radar utilized to track oil spills. Eos, Transactions American Geophysical Union, 93(16), 161–162. doi:10.1029/2012EO160001.

    Article  Google Scholar 

  • McNutt, M. K., Camilli, R., Crone, T. J., Guthrie, G. D., Hsieh, P. A., Reyerson, T. B., et al. (2011). Review of flow rate estimates of the deepwater horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America, 109, 20260–20267. doi:10.1073/pnas.1112139108.

    Article  Google Scholar 

  • MDA. (2009). RADARSAT-2 product description. Richmond, B.C., Canada. http://mdacorporation.com/geospatial/international/satellites/RADARSAT-2. Accessed 7 Mar 2014.

  • Michalewicz, Z. (1994). Genetic algorithms + data structures. Evolution programs. New York: Springer.

    Book  Google Scholar 

  • Minchew, B., Jones, C. E., & Holt, B. (2012). Polarimetric analysis of backscatter from the deepwater horizon oil spill using L-band synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3812–3830. doi:10.1109/TGRS.2012.2185804.

    Article  Google Scholar 

  • RADARSAT-2. (2014). Satellite characteristics. Richmond, B.C., Canada. http://www.asccsa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp#RS2. Accessed 7 Mar 2014.

  • Shirvany, R., Chabert, M., & Tourneret, J.-Y. (2012). Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-pol SAR. Selected Topics in Applied Earth Observations and Remote Sensing, 5, 885–892.

    Article  Google Scholar 

  • Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms. Berlin: Springer.

    Google Scholar 

  • Skrunes, S., Brekke, C., & Eltoft, T. (2012). An experimental study on oil spill characterization by multi-polarization SAR. In Proceedings of European conference on synthetic aperture radar, Nuremberg, Germany, pp. 139–142.

  • Topouzelis, K. N. (2008). Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors, 8(10), 6642–6659.

    Article  Google Scholar 

  • Topouzelis, K., Karathanassi, V., Pavlakis, P., & Rokos, D. (2007). Detection and discrimination between oil spills and look-alike phenomena through neural networks. ISPRS Journal Photogrametry Remote Sensing, 62, 264–270.

    Article  Google Scholar 

  • Topouzelis, K., Karathanassi, V., Pavlakis, P., & Rokos, D. (2009a). Potentiality of feed forward neural networks for classifying dark formations to oil spills and look-alikes. Geocarto International, 24, 179–191.

    Article  Google Scholar 

  • Topouzelis, K., Stathakis, D., & Karathanassi, V. (2009b). Investigation of genetic algorithms contribution to feature selection for oil spill detection. International Journal of Remote Sensing, 30(3), 611–625.

    Article  Google Scholar 

  • Velotto, D., Migliaccio, M., Nunziata, F., & Lehner, S. (2011). Dual-polarized terraSAR-X data for oil-spill observation. IEEE Transactions on Geoscience and Remote Sensing, 49, 4751–4762.

    Article  Google Scholar 

  • Zangari G. (2010). Risk of global climate change by bp oil spill. Frascati National Laboratories, Italy. www.associazionegeofisica.it/OilSpill.pdf. Accessed 7 March 2014.

  • Zhang, Y., Lin, H., Liu, Q., Hu, J., Li, X., & Yeung, K. (2012). Oil-spill monitoring in the coastal waters of Hong Kong and vicinity. Marine Geodesy, 35, 93–106.

    Article  Google Scholar 

  • Zhang, B., Perrie, W., Li, X., & Pichel, W. (2011). Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophysical Research Letter, 38, L10602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maged Marghany.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marghany, M. Automatic Detection of Oil Spill Disasters Along Gulf of Mexico Using RADARSAT-2 SAR Data. J Indian Soc Remote Sens 45, 503–511 (2017). https://doi.org/10.1007/s12524-016-0611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0611-4

Keywords

  • Oil spills
  • Gulf of Mexico
  • RADARSAT-2 SAR
  • ScanSAR narrow beam
  • Genetic algorithm