Skip to main content
Log in

Optimum Features Selection for oil Spill Detection in SAR Image

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In order to classify the dark objects observed in SAR images into oil spills or lookalikes, many features need to be extracted from these images. In this paper, an algorithm is presented for selecting an optimum set of features from SAR images; which maximizes the discrimination between oil spills and their lookalikes in such images. The proposed algorithm consists of the following sections: detection of dark spots in SAR images, extraction of features, selection of features, and the classification of dark spots into oil spills or lookalikes. It is observed that the proposed algorithm can accurately detect and classify the dark spots in SAR images. In extracting the features, 74 different kinds of features consisting of 32 textural features, 19 geometrical features, 19 physical features and 4 contextual features are extracted. In the feature selection step, eight different evolutionary algorithms are employed to yield the desired feature subsets. The obtained subsets are then evaluated based on the classification error rate criterion; while Bayesian network is used to classify the dark spots into oil spills or lookalikes. The proposed algorithm is applied to a data set of 134 oil spills and 118 lookalikes. The classification rate obtained by using the optimum set of features is 93.19 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abeel, T., Helleputte, T., Peer, Y. V., Dupont, P., & Saeys, Y. (2010). Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics, 26(3), 392–398.

    Article  Google Scholar 

  • Al-Ani, A. (2005). Ant colony optimization for feature subset selection, In WEC (2) (pp. 35–38).

  • Alipouri, Y., Poshtan, J., Alipouri, Y., & Alipour, M. R. (2012). Momentum coefficient for promoting accuracy and convergence speed of evolutionary programming. Applied Soft Computing, 12(6), 1765–1786.

    Article  Google Scholar 

  • Amirkhani, A., Mosavi, M. R., Mohammadizadeh, F., & Shokouhi, S. B. (2014). Classification of intraductal breast lesions based on the fuzzy cognitive map. Arabian Journal for Science and Engineering, 39(5), 3723–3732.

    Article  Google Scholar 

  • Arvelyna, Y., Oshima, M., Kristijono, A., & Gunawan, I. (2001). Auto segmentation of oil slick in radarsat SAR image data around rupat island Malacca strait. In Proceedings of ACRS, 22nd Asian Conference on Remote Sensing, 5, 1032–1036.

    Google Scholar 

  • Bevk, M., & Kononenko, I. (2002). A statistical approach to texture description of medical images: a preliminary study. In Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems (pp. 239–244).

  • Bhanu, B., & Lin, Y. (2003). Genetic algorithm based feature selection for target detection in SAR images. Image and Vision Computing, 21(7), 591–608.

    Article  Google Scholar 

  • Brekke, C., & Solberg, H. A. (2005). Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95(1), 1–13.

    Article  Google Scholar 

  • Capstick, D., & Harris, R. (2001). The effects of speckle reduction on classification of ERS SAR data. International Journal of Remote Sensing, 22(18), 3627–3641.

    Article  Google Scholar 

  • Clausi, D. A. (2002). An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian Journal of Remote Sensing, 28(1), 1–18.

    Article  Google Scholar 

  • Del Frate, F., Petrocchi, A., Lichtenegger, J., & Calabresi, G. (2000). Neural networks for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2282–2287.

    Article  Google Scholar 

  • Deshpande, S. D., Er, M. H., Ronda, V., & Chan, P. (1999). P, max-mean and max-median filters for detection of small-targets, In SPIE's International Symposium on Optical Science, Engineering and Instrumentation, (pp. 74–83). Colorado.

  • ERDAS. (1997). ERDAS imagine field guide, 4th ed, Atlanta, Georgia: ERDAS Inc.

  • Espedal, H. A., & Johannessen, O. M. (2000). Detection of oil spills near offshore installations using synthetic aperture radar (SAR). International Journal of Remote Sensing, 11, 2141–2144.

    Article  Google Scholar 

  • Espedal, H. A., & Wahl, T. (1999). Satellite SAR oil spill detection using wind history information. International Journal of Remote Sensing, 20(1), 49–65.

    Article  Google Scholar 

  • Fiscella, B., Giancaspro, A., Nirchio, F., & Trivero, P. (2000). Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21(18), 3561–3566.

    Article  Google Scholar 

  • Gambardella, A., Giacinto, G., MigliacciO, M., & Montali, A. (2010). One-class classification for oil spill detection. Pattern Analysis and Applications, 13(3), 349–366.

    Article  Google Scholar 

  • Gheyas, I., & Smith, L. (2010). Feature subset selection in large dimensionality domains. Pattern Recognition, 43(1), 5–13.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing, 2nd Edition, (pp. 672675).

  • Guo, Y., & Zhang, H. Z. (2014). Oil spill detection using synthetic aperture radar images and feature selection in shape space. International Journal of Applied Earth Observation and Geoinformation, 30, 146–157.

    Article  Google Scholar 

  • Hansen, N. (2005). The CMA evolution strategy: a tutorial. Vu le, 29.

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  • Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. Wiley.

  • Karathanassi, V., Topouzelis, K., Pavlakis, P., & Rokos, D. (2006). An object-oriented methodology to detect oil spills. International Journal of Remote Sensing, 27(23), 5235–5251.

    Article  Google Scholar 

  • Keramitsoglou, I., Cartalis, C., & Kiranoudis, C. T. (2006). Automatic identification of oil spills on satellite images. Environmental Modeling and Software, 21(5), 640–652.

    Article  Google Scholar 

  • Khatib, W., & Fleming, P. J. (1998). The stud GA: A mini revolution?, In Parallel Problem Solving from Nature (pp. 683–691).

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of IJCAI, 14th Int, Joint Conf, Artificial Intelligence, 14(2), 338–345.

    Google Scholar 

  • Kudo, M., & Sklansky, J. (2000). Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 33(1), 25–41.

    Article  Google Scholar 

  • Lin, Y., & Bhanu, B. (2005). Evolutionary feature synthesis for object recognition. IEEE Transaction on Systems, Man, and Cybernetics, 35(2), 156–171.

    Article  Google Scholar 

  • Liu, P., Zhao, C., Li, X., He, M., & Pichel, W. (2010). Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm. International Journal of Remote Sensing, 31(17–18), 4819–4833.

    Article  Google Scholar 

  • Marghany, M. (2001). RADARSAT automatic algorithms for detecting coastal oil spill pollution. International Journal of Applied Earth Observation and Geoinformation, 3(2), 191–196.

    Article  Google Scholar 

  • Mera, D., Cotos, J. M., Varela-Pet, J., Rodriguez, P. G., & Caro, A. (2014). Automatic decision support system based on SAR data for oil spill detection. Computers and Geosciences, 72, 184–191.

    Article  Google Scholar 

  • Otsu, N. (1979). a threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Salberg, A. B., Rudjord, O., & Solberg, A. H. S. (2014). Oil spill detection in Hybrid-polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6521–6533.

    Article  Google Scholar 

  • Sheng, Y., & XIA, Z. (1996). A comprehensive evaluation of filters for radar speckle suppression. In International Geoscience and Remote Sensing Symposium IGARSS, 3, 1559–1561.

    Google Scholar 

  • Shu, Y., Li, J., Yousif, H., & Gomes, G. (2010). Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sensing of Environment, 114(9), 2026–2035.

    Article  Google Scholar 

  • Siedlecki, W., & Sklansky, J. (1989). A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters, 10(5), 335–347.

    Article  Google Scholar 

  • Singha, S., Bellerby, T. J., & Trieschmann, O. (2013). Satellite oil spill detection using artificial neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(6), 2355–2363.

    Article  Google Scholar 

  • Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms. Springer Science and Business Media.

  • Soh, L. K., & Tsatsoulis, C. (1999). Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transactions onGeoscience and Remote Sensing, 37(2), 780–795.

    Article  Google Scholar 

  • Solberg, A. S., Storvik, G., Solberg, R., & Volden, E. (1999). Automatic detection of oil spills in ERS SAR images. IEEE Transactions on Geoscience and Remote Sensing, 37(4), 1916–1924.

    Article  Google Scholar 

  • Solberg, A. H. S., Brekke, C., & Husoy, P. (2007). Oil spill detection in radarsat and envisat SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 746–755.

    Article  Google Scholar 

  • Stathakis, D., Topouzelis, & Karathanassi, V. (2006). Large-scale feature selection using evolved neural networks. In Proceedings of SPIE, Image and Signal Processing for Remote Sensing XII, 6365, 636513.1–636513.9.

    Google Scholar 

  • Tang, W. K. S., Kwong, S., & Man, K. F. (2008). A jumping genes paradigm: theory verification and applications. IEEE Circuits and Systems Magazine, 8(4), 18–36.

    Article  Google Scholar 

  • Thompson, CM. (1995). Image processing toolbox: for use with matlab.

  • Topouzelis, K. (2008). Spill detection by SAR images: dark formation detection. feature extraction and classification algorithms. Sensors, 8(10), 6642–6659.

    Article  Google Scholar 

  • Topouzelis, K., & Psyllos, A. (2012). Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 135–143.

    Article  Google Scholar 

  • Topouzelis, K., Karathanassi, V., Pavlakis, P., & Rokoss, D. (2007). Detection and discrimination between oil spills and look-alike phenomena through neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 264–270.

    Article  Google Scholar 

  • Topouzelis, K., Stathakis, D., & Karathanassi, V. (2009). Investigation of genetic algorithms contribution to feature selection for oil spill detection. International Journal of Remote Sensing, 30(3), 611–625.

    Article  Google Scholar 

  • Xu, L., Li, J., & Brenning, A. (2014). A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sensing of Environment, 141, 14–23.

    Article  Google Scholar 

  • Yao, X., Liu, Y., & Lin, G. M. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2), 82–102.

    Article  Google Scholar 

  • Zhang, H. (2004). The optimality of naïve bayes, In Proc. 17th Int. FLAIRS Conf (pp. 562–567).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Amirkhani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chehresa, S., Amirkhani, A., Rezairad, GA. et al. Optimum Features Selection for oil Spill Detection in SAR Image. J Indian Soc Remote Sens 44, 775–787 (2016). https://doi.org/10.1007/s12524-016-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0553-x

Keywords

Navigation