Skip to main content
Log in

Evaluating the Woody Species Diversity by Means of Remotely Sensed Spectral and Texture Measures in the Urban Forests

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

There is an urgent need to obtain an accurate data on biological diversity and its temporal variation, in order to adopt an appropriate protection strategy to manage the urban forest remnants on sustainable manner for future generations. RapidEye Satellite images with spatial resolution of 5 × 5 m (orthorectified pixel size), ASTER VNIR images with spatial resolution of 15 × 15 m and Landsat-8 OLI images with spatial resolution of 30 × 30 m were used to evaluate the woody species diversity in urban forest remnants. Pearson Correlation Coefficient (PCC) was used to determine the relationships between the woody species diversity at Alpha (α) level and the spectral & texture properties derived from the satellite images. PCC test showed a positive significant relationship between the brightness of the RapidEye satellite image (i.e., Atmospherically Resistant Vegetation Index; ARVI) and the Simpsons Diversity Index (S) (r = 0.80, p < 0.01). In order to also estimate the beta (β) diversity in the study, the relationship between species rarefaction curves and spectral rarefaction curves was calculated through multiple regression analysis i.e., Landsat NDVI, ASTER NDVI and RapidEye NDVI (respectively, R2 = 0.99; 0.99; 0.98, p < 0.01). The findings of the study revealed that satellite image with a resolution of 5 m would be more appropriate to estimate the woody species diversity of urban forest remnants. However, medium resolution satellite images (Landsat) may be used to examine the species rarefaction curve and β diversity in forest remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, E. M., Mutanga, O., Rugege, D., & Ismail, R. (2012). Discriminating the Papyrus Vegetation (Cyperus papyrus L.) and its co-Existent Species Using Random Forest and Hyperspectral Data Resampled to HYMAP. International Journal of Remote Sensing, 33(2), 552–569.

    Article  Google Scholar 

  • Alvey, A. A. (2006). Promoting and Preserving Biodiversity in the Urban Forest. Urban Foresry & Urban Greening, 5(4), 195–201.

    Article  Google Scholar 

  • Ardila, J. P., Bijker, W., Tolpekin, V. A., & Stein, A. (2012). Context-Sensitive Extraction of Tree Crown Objects in Urban Areas Using VHR Satellite Images. International Journal of Applied Earth Observation and Geoinformation, 15, 57–69.

    Article  Google Scholar 

  • Asan, U., Özkan, U. Y., Zengin, H., & Sağlam, S. (2007). Principals of Application of Ecosystem Based Functional Planning Approach in City Groves. In Proceedings of Bottlenecks, Solutions, and Priorities in the Context of Functions of Forest Resources International Symposium, Istanbul, pp. 227–242.

  • Bagnall, R. G. (1979). A Study of Human Impact on a Urban Forest Remnant: Redwood Bush, Tawa, near Wellington, New Zealand. New Zeland Journal of Botany, 17(2), 117–126.

    Article  Google Scholar 

  • Battles, J. J., Shlisky, A. J., & Barrett, R. H. (2001). The Effects of Forest Management on Plant Species Diversity in a Sierran Conifer Forest. Forest Ecology and Management, 146(1), 211–222.

    Article  Google Scholar 

  • Bawa, K., Rose, J., Ganeshaiah, K. N., Barve, N., Kiran, M. C., & Umashaanker, R. (2002). Assessing Biodiversity from Space: An Example from the Western Ghats, India. Conservation Ecology, 6(2), 7.

    Google Scholar 

  • Cayuela, L., Benayas, J. M., Justel, A., & Salas-Rey, J. (2006). Modelling Tree Diversity in a Highly Fragmented Tropical Montane Landscape. Global Ecology and Biogeography, 15, 602–613.

    Article  Google Scholar 

  • Crippen R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 00334(1),71–73.

  • Definiens, A. G. (2006). Definiens professional 5 reference book. Munich: Definiens AG.

    Google Scholar 

  • Dian, Y., Li, Z., & Pang, Y. (2015). Spectral and Texture Features Combined for Forest Tree speciesClassification with Airborne Hyperspectral Imagery. Journal of the Indian Society of Remote Sensing, 43(1), 101–107.

    Article  Google Scholar 

  • Fairbanks, D. H. K., & McGwire, K. C. (2004). Patterns of Floristic Richness in Vegetation Communities of California: Regional Scale Analysis with Multi-Temporal NDVI. Global Ecology and Biogeography, 13, 221–235.

    Article  Google Scholar 

  • Forman, R. T. T. (2014). Urban ecology: Science of cities. Cambridge. Cambridge University Press.

  • Gadow, K. V., & Hui G. (2002). Characterising forest spatial structure and diversity. In Proceedings of in Sustainable Forestry in Temperate Regions. Proceedings of the SUFOR International Workshop, Lund University, pp. 20–30.

  • Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P., & Saatchi, S. (2008). Measuring and Modelling Biodiversity from Space. Progress in Physical Geography, 32(2), 203–221.

    Article  Google Scholar 

  • Harralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Images Classification. Systems, Man and Cybernetics, IEEE Transactions on, 6, 610–621.

    Article  Google Scholar 

  • Hung, M. C. (2002). Urban Land Cover Analysis from Satellite Images. Pecora 15/Land Satellite Information IV/ISPRS Comission I/FIEOS 2002 Conference Proceesings. http://www.isprs.org/proceedings/XXXIV/part1/Paper/00099.pdf. Accessed 15 January 2015.

  • Jensen, J. R., & Lulla, K. (1996). Introductory digital image processing, a remote sensing perspective. New Jersey: Taylor & Francis.

    Google Scholar 

  • Kalayci, S. (2006). SPSS uygulamalı Çok değişkenli istatistik teknikler. Ankara: Asil yayın Dağıtım.

    Google Scholar 

  • Kark, S., & Dearborn, D. C. (2009). Motivations for Conserving Urban Biodiversity. Conservation Biology, 24(2), 432–440.

    Google Scholar 

  • Kaufman, Y. J., & Tanre, D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEEE Transactions. Geoscience. Remote Sensing., 30(2), 261–270.

    Article  Google Scholar 

  • Kayitakire, F., Hamel, C., & Defourny, P. (2006). Retrieving Forest Structure Variables Based on Image Texture Analysis and IKONOS-2 Imagery. Remote Sensing of Environment, 102(3), 390–401.

    Article  Google Scholar 

  • Kim, M., Warner, T. A., Madden, M., & Atkinson, D. S. (2011). Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects. International Journal of Remote Sensing, 32(10), 2825–2850.

    Article  Google Scholar 

  • Kong, F., Yin, H., & Nakagoshi, N. (2007). Using GIS and Landscape Metrics in the Hedonic Price Modeling of the Amenity Value of Urban Green Space: A Case Study in Jinan City, China. Landscape Urban Planning, 79, 240–252.

    Article  Google Scholar 

  • Konijnendijk, C. C. (2005). New perspectives for urban forests: Introducing wild woodlands. In I. Kowaric, & S. Körner (Eds.), Wild urban woodlands (pp. 33–45). New York: Springer.

    Chapter  Google Scholar 

  • Levin, N., Shmida, A., Levanoni, O., Tamari, H., & Kark, S. (2007). Predicting Mountain Plant Richness and Rarity from Space Using Satellite-Derived Vegetation Indices. Diversity and Distributions, 13(6), 692–703.

    Article  Google Scholar 

  • Luoto, M., Toivonen, T., & Heikkinen, R. K. (2002). Prediction of Total and Rare Plant Species Richness in Agricultural Landscapes from Satellite Images and Topographic Data. Landscape Ecology, 17(3), 195–217.

    Article  Google Scholar 

  • Mansfield, C., Pattanayak, S. K., McDow, W., McDonald, R., & Halpin, P. (2005). Shades of Green: Measuring the Value of Urban Forests in the Housing Market. Journal of Forest Economics, 11(3), 177–199.

    Article  Google Scholar 

  • McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation. Bioscience, 52(10), 883–890.

    Article  Google Scholar 

  • Moser, D., Zechmeister, H. G., Plutzar, C., Sauberer, N., Wrbka, T., & Grabherr, G. (2002). Landscape Patch Shape Complexity as an Effective Measure for Plant Species Richness in Rural Landscapes. Landscape Ecology, 17(7), 657–669.

    Article  Google Scholar 

  • Mutowo, G., & Murwira, A. (2012). Relationship Between Remotely Sensed Variables and Tree Species Diversity in Savanna Woodlands of Southern Africa. International Journal of Remote Sensing, 33(20), 6378–6402.

    Article  Google Scholar 

  • Nagendra, H. (2001). Using Remote Sensing to Assess Biodiversity. International Journal of Remote Sensing, 22(12), 2377–2400.

    Article  Google Scholar 

  • Oldeland, J., Wesuls, D., Rocchini, D., Schmidt, M., & Jürgens, N. (2010). Does Using Species Abundance Data Improve Estimates of Species Diversity from Remotely Sensed Spectral Heterogeneity? Ecological Indicators, 10(2), 390–396.

    Article  Google Scholar 

  • Ozdemir, İ., & Donoghue, D. N. M. (2013). Modelling Tree Size Diversity from Airborne Laser Scanning Using Canopy Height Models with Image Texture Measures. Forest Ecology and Management, 295, 28–37.

    Article  Google Scholar 

  • Ozdemir, I., & Karnieli, A. (2011). Predicting Forest Structural Parameters Using the Image Texture Derived from WorldView-2 Multispectral Imagery in a Dryland Forest, Israel. International Journal of Applied Earth Observation and Geoinformation, 13(5), 701–710.

    Article  Google Scholar 

  • Ozdemir, I., Norton, D. A., Ozkan, U. Y., Mert, A., & Senturk, O. (2008). Estimation of Tree Size Diversity Using Object Oriented Texture Analysis and Aster Imagery. Sensors, 8, 4709–4724.

    Article  Google Scholar 

  • Ozdemir, I., Mert, A., & Senturk, O. (2012). Predicting Landscape Structural Metrics Using Aster Satellite Data. Journal of Environmental Engineering and Landscape Management, 20(2), 168–176.

    Article  Google Scholar 

  • Ozkan, U. Y. (2014). Assessment of Visual Landscape Quality Using IKONOS Imagery. Environmental Monitoring and Assessment, 186(7), 4067–4080.

    Article  Google Scholar 

  • Petr, P., Zdena, C., Antonin, P., Vojtech, J., Milan, C., & Lubomir, T. (2004). Trends in Species Diversity and Composition of Urban Vegetation over Three Decades. Journal of Vegetation Science, 15(6), 781–788.

    Article  Google Scholar 

  • Rocchini, D. (2007). Effects of Spatial and Spectral Resolution in Estimating Ecosystem α-Diversity by Satellite Imagery. Remote Sensing of Environment, 111(4), 423–434.

    Article  Google Scholar 

  • Rocchini, D., Chiarucci, A., & Loiselle, S. A. (2004). Testing the Spectral Variation Hypothesis by Using Satellite Multispectral Images. Acta Oecologica, 26(2), 117–120.

    Article  Google Scholar 

  • Rocchini, D., Butini, S. A., & Chiarucci, A. (2005). Maximizing Plant Species Inventory Efficiency by Means of Remotely Sensed Spectral Distances. Global Ecology and Biogeography, 14(5), 431–437.

    Article  Google Scholar 

  • Rocchini, D., Ricotta, C., & Chiarucci, A. (2007). Using Satellite Imagery to Assess Plant Species Richness: The Role of Multispectral System. Applied Vegation Science, 10(3), 325–331.

    Article  Google Scholar 

  • Rocchini, D., Ricotta, C., Chiarucci, A., De Dominicis, V., Cirillo, I., & Maccherini, S. (2009). Relating Spectral and Species Diversity Through Rarefaction Curves. International Journal of Remote Sensing, 30(10), 2705–2711.

    Article  Google Scholar 

  • Rocchini, D., McGlinn, D., Ricotta, C., Neteler, M., & Wohlgemuth, T. (2011). Landscape Complexity and Spatial Scale Influence the Relationship Between Remotely Sensed Spectral Diversity and Survey-Based Plant Species Richness. Journal of Vegetation Science, 22(4), 688–698.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Jr., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of Third ERTS-1 Symposium, Washington DC, pp. 309–317.

  • Sander, H., Polasky, S., & Haight, R. G. (2010). The Value of Urban Tree Cover: A Hedonic Property Price Model in Ramsey and Dakota Counties, Minnesota, USA. Ecological Economics, 69(8), 1646–1656.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Simpson, E. H. (1949). Measurement of Diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Singh, J. S., Roy, P. S., Murthy, M. S. R., & Jha, C. S. (2010). Application of Landscape Ecology and Remote Sensing for Assessment, Monitoring and Conservation of Biodiversity. Journal of the Indian Society of Remote Sensing, 38(3), 365–385.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Tyrväinen, L., Pauleit, S., Seeland, K., & Vries, D. (2005). Benefits and uses of urban forests and tree. In C. Konijnendijk,, K. Nilsson, T. Randrup, J. Schipperijn (Ed), In urban forests and trees (pp.81–114). New York: Springer.

  • Varghese, A. O., Joshi, A. K., & Murthy, Y. K. (2010). Mapping of Realized and Fundamental Niches of Threatened Tree Species Using Geoinformatics: A Species Level Approach for Sustaining Biodiversity. Journal of the Indian Society of Remote Sensing, 38(3), 523–534.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the project no 114O015. We would like to thank first and foremost TÜBİTAK for its support. Furthermore, we would like to thank Istanbul University, Faculty of Forestry for facilitating our study. We would like to thank Istanbul Metropolitan Municipality for allowing us to perform our study in the urban forest remnants that are under its ownership. Lastly, we thank to Dr. Rajpar Muhammad Nawaz for English editing of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulas Yunus Ozkan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, U.Y., Ozdemir, I., Saglam, S. et al. Evaluating the Woody Species Diversity by Means of Remotely Sensed Spectral and Texture Measures in the Urban Forests. J Indian Soc Remote Sens 44, 687–697 (2016). https://doi.org/10.1007/s12524-016-0550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0550-0

Keywords

Navigation