Skip to main content

Advertisement

Log in

Retrieval of CDOM and DOC Using In Situ Hyperspectral Data: A Case Study for Potable Waters in Northeast China

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of dissolved organic carbon (DOC), together with phytoplankton and total suspended matter are the main optically active components could be retrieved by remote sensing data. Generally, different composition of DOC and CDOM corresponds to different water surface reflectance. Absorption properties of CDOM and retrieval models for CDOM and DOC were investigated with data from potable reservoirs located in the central of Jilin Province. Water sampling field surveys were conducted on 15, 16 and 19 of September 2012 across the Shitoukoumen, Erlonghu and Xilicheng reservoirs, respectively. Both empirical regression (single band model and band ratio model) and partial least squares coupled with back-propagation artificial neural models (PLSBPNN) were established to estimate CDOM absorption coefficient at 355 nm [aCDOM(355)] and DOC concentration with in situ measured remote sensing reflectance. It was found that the band ratio models and PLSBPNN model performed well for estimating DOC concentration while the band ratio models yielded the best result in retrieval CDOM. Moreover, all the three models performed better on the DOC concentration estimation than the performance on aCDOM(355). Band ratio models outperformed (R 2 = 0.55) other models for estimating CDOM absorption coefficient, while PLSBPNN model outperformed other models with respect to DOC estimation (R 2 = 0.93). High spectral slope values indicated that CDOM in the potable waters primarily comprised low molecular weight organic substances; while sources of DOC were mainly coming from exogenous input, which was the main reason lead to the difference of model performances on DOC and aCDOM(355) estimation. The algorithms developed in this study is needed to be tested and refined with more in situ spectral data, also future work is still needed to be undertaken for characterizing the dynamic of the potable water quality with remotely sensed imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amon, R. M. W., & Benner, R. (1994). Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature, 369, 549–552.

    Article  Google Scholar 

  • Arenz Jr, R. F., Lewis Jr, W. M., & Saunders III, J. F. (1996). Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. International Journal of Remote Sensing, 17(8), 1547–1565.

  • Bishop, K., Seibert, J., Köhler, S., & Laudon, H. (2004). Resolving the double paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18(1), 185–189.

    Article  Google Scholar 

  • Brando, V. E., & Dekker, A. G. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. Geoscience and Remote Sensing, IEEE Transactions on, 41(6), 1378–1387.

    Article  Google Scholar 

  • Bricaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain. Limnology and Oceanography, 26(1), 43–53.

    Article  Google Scholar 

  • Bukata, R.P., Jerome, J.H., Kondratyev, A.S., et al. (1995). Optical properties and remote sensing of inland and coastal waters. CRC press.

  • Carder, K. L., Steward, R. G., Harvey, G. R., & Ortner, P.B. (1989). Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 34(1), 68–81.

    Article  Google Scholar 

  • Chen, C. Q., & Shi, P. (2001). Application of ocean color satellite remote sensing data for estimation of DOC concentration. Acta Scientiae Circumstantiae, 06, 0715–0719. Chinese with English Abstract.

    Google Scholar 

  • Chen, Z., Curran, P. J., & Hansom, J. D. (1992). Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sensing of Environment, 40(1), 67–77.

    Article  Google Scholar 

  • Chen, C. Q., Pan, Z. L., & Shi, P. (2003). Simulation of sea water reflectance and its application in retrieval of yellow substance by remote sensing data. Journal of Tropical Oceanography, 05, 33–39. Chinese with English Abstract.

    Google Scholar 

  • Chen, Z. Q., Li, Y., & Pan, J. M. (2004). Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Continental Shelf Research, 24, 1845–1856.

    Article  Google Scholar 

  • Chen, L., Huang, J. F., Wang, F. M., & Tang, Y. L. (2007). Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyperspectral data. International Journal of Remote Sensing, 28(16), 3457–3478.

    Article  Google Scholar 

  • Coble, P. G. (2007). Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews, 107(2), 402–418.

    Article  Google Scholar 

  • Cory, N., Buffam, I., Laudon, H., Kohler, S., & Bishop, K. (2006). Landscape control of stream water aluminum in a boreal catchment during spring flood. Environmental Science and Technology, 40(11), 3494–3500.

    Article  Google Scholar 

  • Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Science of the Total Environment, 268(1), 197–214.

    Article  Google Scholar 

  • Dong, Q., Shang, S. L., & Lee, Z. P. (2013). An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color. Remote Sensing of Environment, 128, 259–267.

  • Fellman, J. B., Petrone, K. C., & Grierson, P. F. (2011). Source, biogeochemical cycling, and fluorescence characteristics of dissolved organic matter in an agro-urban estuary. Limnology and Oceanography, 56(1), 243–256.

    Article  Google Scholar 

  • Ferrari, G. M., Dowell, M. D., Grossi, S., & Targa, C. (1996). Relationship between optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the Southern Baltic Sea region. Marine Chemistry, 55(3), 299–316.

    Article  Google Scholar 

  • Gitelson, A. A. (1992). The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13(17), 3367–3373.

    Article  Google Scholar 

  • Gitelson, A. A., Schalles, J. F., & Hladik, C. M. (2007). Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 109(4), 464–472.

    Article  Google Scholar 

  • Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60(11), 1193–1202.

    Article  Google Scholar 

  • Helms, J. R., Stubbins, A., Ritchie, J. D., & Minor, E. C. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3), 955–969.

    Article  Google Scholar 

  • Jiang, G. J., Ma, R. H., Duan, H. T., Loiselle, S. A., Xu, J. P., & Liu, D. W. (2014). Remote determination of chromophoric dissolved organic matter in lakes, China. International Journal of Digital Earth, 7(11), 897–915.

    Article  Google Scholar 

  • Kalle, K. (1996). The problem of the gelbstoff in the sea. Oceanography and Marine Biology. An Annual Review, 4(9), 91–104.

  • Keiner, L. E., & Yan, X. H. (1998). A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sensing of Environment, 66(2), 153–165.

    Article  Google Scholar 

  • Kirk, J.T.O. (1994). Light and photosynthesis in aquatic ecosystems. Cambridge university press.

  • Kutser, T., Pierson, D. C., Tranvik, L., Reinart, A., Sobek, S., & Kallio, K. (2005). Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. Ecosystems, 8(6), 709–720.

    Article  Google Scholar 

  • Kutser, T., Verpoorter, C., Paavel, B., & Tranvik, L. J. (2015). Estimating lake carbon fractions from remote sensing data. Remote Sensing of Environment, 157, 138–146.

    Article  Google Scholar 

  • Larson, J. H., Frost, P. C., Zheng, Z., Johnston, C. A., Bridgham, S. D., Lodge, D. M et al. (2007). Effects of upstream lakes on dissolved organic matter in streams. Limnology and Oceanography, 52(1), 60–69.

    Article  Google Scholar 

  • Ledesma, J. L. J., Köhler, S. J., & Futter, M. N. (2012). Long-term dynamics of dissolved organic carbon: implications for drinking water supply. Science of the Total Environment, 432, 1–11.

    Article  Google Scholar 

  • Lee, Z. P., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41, 5755–5772.

    Article  Google Scholar 

  • Lee, Z.P., Weidemann, A., Kindle, J., et al. (2007). Euphotic zone depth: Its derivation and implication to ocean color remote sensing. Journal of Geophysical Research: Oceans (1978–2012), 112(C3).

  • Li, F., Xu, J. P., He, Y. F., et al. (2009). Spectral absorption properties of particulate matters in the Shitoukoumen Reservoir of Changchun City. Journal of Lake Sciences, 21(2), 280–287. Chinese with English Abstract.

    Article  Google Scholar 

  • Liu, C. C., & Miller, R. L. (2008). Spectrum matching method for estimating the chlorophyll-a concentration, CDOM ratio, and backscatter fraction from remote sensing of ocean color. Canadian Journal of Remote Sensing, 34, 343–355.

    Article  Google Scholar 

  • Mannino, A., Russ, M. E., & Hooker, S. B. (2008). Algorithmdevelopment and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight. Journal of Geophysical Research-Oceans, 113, 19.

  • Miller, R. L., & McKee, B. A. (2004). Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment, 93(1), 259–266.

    Article  Google Scholar 

  • Nelson, N. B., Siegel, D. A., & Michaels, A. F. (1998). Seasonal dynamics of colored dissolved material in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 45(6), 931–957.

    Article  Google Scholar 

  • Osburn, C. L., Wigdahl, C. R., Fritz, S. C., et al. (2011). Dissolved organic matter composition and photoreactivity in prairie lakes of the US Great Plains. Limnology and Oceanography, 56(6), 2371–2390.

    Article  Google Scholar 

  • Rochelle-Newall, E. J., & Fisher, T. R. (2002). Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Marine Chemistry, 77(1), 23–41.

    Article  Google Scholar 

  • Rundquist, D. C., Han, L., Schalles, J. F., & Peake, J. S. (1996). Remote measurement of algal chlorophyll in surface waters: the case for the first derivative of reflectance near 690 nm. Photogrammetric Engineering and Remote Sensing, 62(2), 195–200.

    Google Scholar 

  • Sachse, A., Henrion, R., Gelbrecht, J., Steinberg, C. E. W. (2005). Classification of dissolved organic carbon (DOC) in river systems: influence of catchment characteristics and autochthonous processes. Organic Geochemistry, 36(6), 923–935.

    Article  Google Scholar 

  • Sandidge, J. C., & Holyer, R. J. (1998). Coastal bathymetry from hyperspectral observations of water radiance. Remote Sensing of Environment, 65(3), 341–352.

    Article  Google Scholar 

  • Schlesinger, W. H., Cole, J. J., Finzi, A. C., & Holland, E. A. (2011). Introduction to coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 9(1), 5–8.

    Article  Google Scholar 

  • Shao, T.T., Song, K.S., Du, J., Zhao, Y., Ding, Z., Guan, Y., et al. (2015). Seasonal Variations of CDOM Optical Properties in Rivers across the Liaohe Delta. Wetlands, 1–12.

  • Shi, K., Li, Y. M., Wang, Q., Yang, Y., Jin, X., Wang, Y. F., et al. (2010). Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake. Environmental Science, 31(5), 1183–1191. Chinese with English Abstract.

    Google Scholar 

  • Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 52(3), 1208–1219.

    Article  Google Scholar 

  • Song, K.S., Liu, D.W., Li, L., Wang, Z., Wang, Y., Jiang, G. (2010). Spectral absorption properties of colored dissolved organic matter (CDOM) and total suspended matter (TSM) of inland waters. SPIE Proceedings, 78110B-78110B, 13 pp.

  • Song, K. S., Wang, Z. M., Blackwell, J., Zhang, B., Li, F., Zhang, Y., et al. (2011). Water quality monitoring using Landsat Themate Mapper data with empirical algorithms in Chagan Lake, China. Journal of Applied Remote Sensing, 5(1), 053506. -053506-16.

    Article  Google Scholar 

  • Song, K. S., Li, L., Wang, Z. M., Liu, D. W., Zhang, B., Xu, J. P., et al. (2012). Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environmental Monitoring and Assessment, 184(3), 1449–1470.

    Article  Google Scholar 

  • Song, K. S., Li, L., Tedesco, L. P., Li, S., Duan, H., Liu, D., et al. (2013a). Remote estimation of chlorophyll-a in turbid inland waters: three-band model versus GA-PLS model. Remote Sensing of Environment, 136, 342–357.

    Article  Google Scholar 

  • Song, K. S., Zang, S. Y., Zhao, Y., Li, L., Du, J., Zhang, N. N., et al. (2013b). Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrology and Earth System Sciences, 17(10), 4269–4281.

    Article  Google Scholar 

  • Song, K. S., Li, L., Li, S., Tedesco, L., Duan, H., Li, Z., et al. (2014). Using partial least squares-artificial neural network for inversion of inland water Chlorophylla. Geoscience and Remote Sensing, IEEE Transactions on, 52(2), 1502–1517.

  • Spencer, R.G.M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K., Aufdenkampe, A. K., et al. (2009). Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. Journal of Geophysical Research: Biogeosciences (2005–2012), 114(G3).

  • Spencer, R. G. M., Butler, K. D., & Aiken, G. R. (2012). Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. Journal of Geophysical Research, 117, G03001. 14 pp.

    Article  Google Scholar 

  • Sun, L. Q., Tian, W., Ma, G. Q., Sun, C. Y., Gu, B. (2011). Analysis of the nutrient dynamics and eutrophication characters in Xinlicheng Reservoir. Journal of Graduate University of Chinese Academy of Sciences, 06, 0728–0733. Chinese with English Abstract.

    Google Scholar 

  • Tanaka, A,, Oishi, T. (1998). Application of the neural network to OCTS data. In S. Ackleson (Ed.), Proceedings, ocean optics, XIV, Washington DC Office of Naval Research.

  • Twardowski, M. S., & Donaghay, P. L. (2002). Photobleaching of aquatic dissolved materials: absorption removal, spectral alteration, and their interrelationship. Journal of Geophysical Research: Oceans (1978–2012), 107(C8), 6-1–6-12.

    Article  Google Scholar 

  • Vodacek, A., Blough, N. V., DeGrandpre, M. D., Peltzer, E. T., & Nelson, R. K. (1997). Seasonal variation of CDOM and DOC in the middle Atlantic bight: terrestrial inputs and photooxidation. Limnology and Oceanography, 42(4), 674–686.

  • Wang, P., Boss, E. S., & Roesler, C. (2005). Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color. Applied Optics, 44(19), 4074–4085.

    Article  Google Scholar 

  • Wang, X. N., Yin, H., & Wu, X. L. (2011). Study on Erlong Lake water source pollution changing tendency and eutrophication prevention measure. Journal of Changchun University of Science and Technology (Natural Science Edition), 34(1), 161–163. Chinese with English Abstract.

    Google Scholar 

  • Webster, K. E., Soranno, P. A., Cheruvelil, K. S., Bremigan, M. T., Downing, J. A., Vaux, P. D., et al. (2008). An empirical evaluation of the nutrient-color paradigm for lakes. Limnology and Oceanography, 53(3), 1137–1148.

    Article  Google Scholar 

  • Williamson, C. E., & Rose, K. C. (2010). When UV meets fresh water. Science, 329(5992), 637–639.

    Article  Google Scholar 

  • Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography, 44(3), 795–803.

    Article  Google Scholar 

  • Wilson, H. F., & Xenopoulos, M. A. (2008). Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems, 11(4), 555–568.

    Article  Google Scholar 

  • Winn, N., Williamson, C. E., Abbitt, R., Rose, K., Renwick, W., Henry, M., et al. (2009). Modeling dissolved organic carbon in subalpine and alpine lakes with GIS and remote sensing. Landscape Ecology, 24(6), 807–816.

    Article  Google Scholar 

  • Xie, H., Zafiriou, O. C., Cai, W. J., Zepp, R. G., & Wang, Y. C. (2004). Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environmental Science & Technology, 38(15), 4113–4119.

    Article  Google Scholar 

  • Xu, J. P., Li, F., Zhang, B., Song, K., Wang, Z., Liu, D., et al. (2009). Estimation of chlorophyll-a concentration using field spectral data: a case study in inland Case-II waters, North China. Environmental Monitoring and Assessment, 158(1–4), 105–116.

    Article  Google Scholar 

  • Yang, W., Matsushita, B., Chen, J., Yoshimura, K., & Fukushima, T. (2014). Application of a semianalytical algorithm to remotely estimate diffuse attenuation coefficient in turbid inland waters. Geoscience and Remote Sensing Letters, IEEE, 11(6), 1046–1050.

  • Zhang, Y.L., Huang, Q.F., Ma, R.H. et al. (2005). Retrieving of dissolved organic carbon based on irradiance reflectance in typical lake zones of Lake. 07: 0772–0777 (Chinese with English Abstract).

  • Zhang, Y. L., Qin, B. Q., Zhang, L., Zhu, G. W., & Chen, W. M. (2005b). Spectral absorption and fluorescence of chromophoric dissolved organic matter in shallow lakes in the middle and lower reaches of the Yangtze River. Journal of Freshwater Ecology, 20(3), 451–459.

    Article  Google Scholar 

  • Zhang, X. S., Li, Q. M., Li, H. R., et al. (2007a). The soil and water loss hazards and their countermeasures in Erlong Lake basin. Research of Soil and Water Conservation, 05, 0369–0370. Chinese with English Abstract.

    Google Scholar 

  • Zhang, Y. L., Qin, B. Q., Zhu, G. W., Zhang, L., & Yang, L. Y. (2007b). Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake. Hydrobiologia, 581(1), 43–52.

    Article  Google Scholar 

  • Zhang, Y. L., Liu, M. L., Qin, B. Q., & Feng, S. (2009). Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation. Hydrobiologia, 627(1), 159–168.

    Article  Google Scholar 

  • Zhu, W.N., Yu, Q., Tian, Y. Q., Chen, R. F., & Gardner, G. B. (2011). Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. Journal of Geophysical Research: Oceans (1978–2012), 116(C2).

  • Zhu, W. N., Tian, Y. Q., Yu, Q., & Becker, B. L. (2013). Using hyperion imagery to monitor the spatial and temporal distribution of colored dissolved organic matter in estuarine and coastal regions. Remote Sensing of Environment, 134, 342–354.

    Article  Google Scholar 

  • Zhu, W. N., Yu, Q., Tian, Y. Q., Becker, B. L., Zheng, T., & Carricka, H. J. (2014). An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sensing of Environment, 140, 766–778.

    Article  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (No. 41471290) and the ‘One Hundred Talents Project’ of Chinese Academy of Sciences, China (granted to Dr. Kaishan Song). We would like to thank S. Lv, Y. Guan, and L. Liu for their capable assistance in the field and laboratory. We are grateful for the constructive comments from anonymous reviewers that have strengthened the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaishan Song.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 2270 kb)

Figure S2

(DOCX 134 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, T., Song, K., Du, J. et al. Retrieval of CDOM and DOC Using In Situ Hyperspectral Data: A Case Study for Potable Waters in Northeast China. J Indian Soc Remote Sens 44, 77–89 (2016). https://doi.org/10.1007/s12524-015-0464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0464-2

Keywords

Navigation