Skip to main content

Advertisement

Log in

A Multiplatform Approach Using MODIS Sensors to Cross-Calibrate the HJ-1A/CCD1 Sensors Over Aquatic Environments

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A cross-calibration model is developed for calibrating the reflectance of HJ-1A/CCD1 sensor to MODIS/Terra sensor in the post-launch era. The vicarious cross-calibration models are initialized using the image pairs of HJ-1A/CCD1 and MODIS/Terra sensors collected from two testing sites, Nam Co Lake and Qinghai Lake, China. Our results show the cross-calibration model produced good performance in calibrating reflectance of HJ-1A/CCD1 sensor to MODIS/Terra sensor, whose mean relative error do not exceed 8.5 % for three visible channels of HJ-1A/CCD1 sensor. Moreover, the theoretical difference between the MODIS/Terra and HJ-1A/CCD1 reflectance are simulated using the 6S code. The results indicate that it would cause a pronounced difference. Therefore, it necessary to reinitialize the coefficients of the water color remote sensing models, when those models with HJ-1A/CCD1 band were applied to the vicarious cross-calibration data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barnes, W. L., Pagano, T. S., & Salomonson, V. V. (1998). Prelaunch characteristics of the moderate resolution imaging spectroradiometer (modis) on eos-ami. IEEE Transactions and Geoscience and Remote Sensing, 36(4), 1088–1100.

    Article  Google Scholar 

  • Chander, G., Coan, M. J., & Scaramuzza, P. L. (2008). Evaluation and comparison of the irs-p6 and landsat sensors. IEEE Trans Geosci Remote Sens, 46(1), 209–220.

    Article  Google Scholar 

  • Chen, J., & Zhao, Q. S. (2014). An approach for estimating modis reflectance at top-of-atmosphere at 667 and 678 nm from reflectance at 645nm in turbid waters. Earth Environmental Sciences, 71(3), 1105–1114.

    Article  Google Scholar 

  • Chen, J., Yao, G. Q., & Quan, W. T. (2013a). Retrieval of specific absorption and backscattering coefficients from hj-1a/ccd imagery in coastal waters. Opt Express, 21(5), 5803–5821.

    Article  Google Scholar 

  • Chen, J., Zhang, M. W., Cui, T. W., & Wen, Z. H. (2013b). A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters. IEEE Journal of Selected Topic on Applied Earth Observation and Remote Sensing, 6(5), 2275–2289.

    Article  Google Scholar 

  • Chen, J., Cui, T. W., Qiu, Z. F., & Lin, C. S. (2014). A three-band semi-analytical model for deriving total suspended sediment concentration from hj-1a/ccd data in turbid coastal waters. ISPRS J Photogramm Remote Sens, 93, 1–13.

    Article  Google Scholar 

  • Chopping, M. J. (2000). Testing a lisk brdf model with in situ bidirectional reflectance factor measurements over semiarid grasslands. Remote Sens Environ, 74(2), 287–312.

    Article  Google Scholar 

  • Gordon, H. R. (1998). In-orbit calibration strategy for ocean color sensors. Remote Sens Environ, 63(3), 265–278.

    Article  Google Scholar 

  • Gordon, H. R., & Franz, B. A. (2008). Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for seawifs and modis intercomparisons. Remote Sensing Environment, 112, 2667–2685.

    Article  Google Scholar 

  • Gordon, H. R., & Voss, K. J. 1999. Modis normalized water-leaving radiance algorithm theoretical basis document, NASA Technical Report Series, NAS5-31363.

  • Green, R. O., & Shimada, M. (1997). On-orbit calibration of a multi-spectral satellite sensor using a high altitude airborne imaging spectrometer. Adv Space Res, 19(9), 1387–1398.

    Article  Google Scholar 

  • Hovis, W. A., Knoll, J. S., & Smith, G. R. (1985). Aircraft measurements for calibration of an orbiting spacecraft sensor. Appl Opt, 24, 407–410.

    Article  Google Scholar 

  • Hu, C. M., Muller-Karger, F. E., Andrefouet, S., & Carder, K. L. (2001). Atmospheric correction and cross-calibration of landsat-7/etm + imagery over aquatic environments: a multiplantform approach using seawifs/modis. Remote Sensing Environment, 78, 99–107.

    Article  Google Scholar 

  • Kelong, C., Yanli, H., Shengkui, C., Jin, M., Guangchao, C., & Hui, L. (2011). The study of vegetation carbon storage in qinghai lake valley based on remote sensing and casa model. Procedia Environmental Sciences, 10, Part B(0), 1568–1574.

    Article  Google Scholar 

  • Liang, S., & Strahler, A. H. (1994). Retrieval of surface brdf from multiangle remotely sensed data. Remote Sens Environ, 50(1), 18–30.

    Article  Google Scholar 

  • Lu, S., Wu, B., Yan, N., & Wang, H. (2011). Water body mapping method with hj-1a/b satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13(3), 428–434.

    Article  Google Scholar 

  • Lucht, W., Schaaf, C. B., & Strahler, A. H. (2000). An algorithm for the retrieval of the albedo from space using semiemirical brdf models. IEEE Trans Geosci Remote Sens, 38, 977–998.

    Article  Google Scholar 

  • Meister, G., Franz, B. A., Kwiatkowska, E. J., & McClain, C. R. (2012). Corrections to the calibration of modis aqua ocean color bands derived from seawifs data. IEEE Transactions and Geoscience and Remote Sensing, 50(1), 310–319.

    Article  Google Scholar 

  • Minnaert, M. (1941). The reciprocity principle in lunar photometry. Astrophysical Journal, 93, 403–410.

    Article  Google Scholar 

  • Mobley, C. D. (1994). Light and water: radiative transfer in natural waters. New York: Academic.

    Google Scholar 

  • Parkinson, C. L. (2003). Aqua: an earth-observing satellite mission to examine water and other climate variables. IEEE Transactions and Geoscience and Remote Sensing, 41(2), 173–183.

    Article  Google Scholar 

  • Rao, C. R. N., Chen, J., Sullivan, J. T., & Zhang, N. (1999). Post-launch calibration of meteorological satellite sensors. Adv Space Res, 23(8), 1357–1365.

    Article  Google Scholar 

  • Susaki, J., Hara, K., Kajiwara, K., & Honda, Y. (2004). Robust estimation of brdf model parameters. Remote Sens Environ, 89(1), 63–71.

    Article  Google Scholar 

  • Teillet, P. M., Fedosejevs, G., Thome, K. J., & Barker, J. L. (2007). Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens Environ, 110(3), 393–409.

    Article  Google Scholar 

  • Thome, K. J. (2001). Absolute radiometric calibration of landsat 7 etm + using the reflectance-based method. Remote Sens Environ, 78(1–2), 27–38.

    Article  Google Scholar 

  • Tian, L.Q., Lu, J.Z., Chen, X.L., Yu, Z.F., Xiao, J.J., Qiu, F., & Zhao, X. 2010. Atmospheric correction of hj-1a/b ccd imageries over chinese coastal waters using modis-terra aerosol data. Science China Technological Sciences 191–195.

  • Wang, M., & Shi, W. (2007). The nir-swir combined atmospheric correction approach for modis ocean color data processing. Opt Express, 15, 15722–15733.

    Article  Google Scholar 

  • Wang, Q., Wu, C. Q., Li, Q., & Li, J. S. (2010). Chinese hj-1a/b satellites and data characteristics. Science China Earth Sciences, 53, 51–57.

    Article  Google Scholar 

  • Wang, G., Zhang, B., Li, J., Zhang, H., Shen, Q., Wu, D., & Song, Y. (2011). Study on monitoring of red tide by multi-spectral remote sensing based on hj-ccd and modis. Procedia Environmental Sciences, 11, Part C(0), 1561–1565.

    Article  Google Scholar 

  • Wang, J., Ge, Y., Heuvelink, G. B. M., Zhou, C., & Brus, D. (2012a). Effect of the sampling design of ground control points on the geometric correction of remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation, 18, 91–100.

    Article  Google Scholar 

  • Wang, S. D., Miao, L. L., & Peng, G. X. (2012b). An improved algorithm for forest fire detection using hj data. Procedia Environmental Sciences, 13, 140–150.

    Article  Google Scholar 

  • Yu, X. L., & Wu, Z. C. (2011). The comparison between hj satellite’s ccd sensors field calibration and cross calibration. Chinese Journal of Sensors and Actuators, 24, 1435–1439.

    Google Scholar 

  • Yu, Z. F., Chen, X. L., Zhou, B., Tian, L. Q., Yuan, X. H., & Feng, L. (2012). Assessment of total suspended sediment concentrations in poyang lake using hj-1a/b ccd imagery. Chin J Oceanol Limnol, 30, 295–304.

    Article  Google Scholar 

  • Zhang, B., Wu, Y., Zhu, L., Wang, J., Li, J., & Chen, D. (2011). Estimation and trend detection of water storage at nam co lake, central tibetan plateau. J Hydrol, 405(1–2), 161–170.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the NASA for their help with providing the MODIS dataset. We would like to express our gratitude to two anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Quan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, W. A Multiplatform Approach Using MODIS Sensors to Cross-Calibrate the HJ-1A/CCD1 Sensors Over Aquatic Environments. J Indian Soc Remote Sens 43, 687–695 (2015). https://doi.org/10.1007/s12524-015-0452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0452-6

Keywords