Skip to main content

Advertisement

Log in

Remote Detection of Shoreline Changes in Eastern Bank of Laizhou Bay, North China

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Sandy beaches of the eastern coast zone in Eastern Laizhou Bay represent the most popular tourist, recreational destinations and constitute some of the most valuable restates in China. This paper presents the detection of shoreline changes in Laizhou Bay East Bank using an automatic histogram thresholding algorithm on the basis of multi-temporal Landsat images. Shoreline change rates (SCR) and shoreline change areas (SCA) were retrieved using the statistical approach and zonal change detection method, respectively. Results showed that during 1979–2010 a large portion (over 59.8 %) of shoreline are dominated by a retreating process with an average rate of −2.01 m/year, while other parts of shoreline exhibited a seaward advancing trend due to intense land reclamation activities. It is our anticipation that the result of this work would support sandy beaches protection and management in China coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(2009), 893–903.

    Article  Google Scholar 

  • Chang, J., Liu, G. H., & Liu, Q. S. (2004). Dynamic monitoring of coastline in the Yellow River Delta by remote sensing. Geo-Information Science, 6(1), 94–98.

    Google Scholar 

  • Cracknell, A. P. (1999). Remote sensing techniques in estuaries and coastal zones an update. International Journal of Remote Sensing, 20(3), 485–496.

    Article  Google Scholar 

  • Douglas, B. C., & Crowell, M. (2000). Long-term shoreline position prediction and error propagation. Journal of Coastal Research, 16(1), 145–152.

    Google Scholar 

  • Du, G. Y., & Sun, Z. Y. (2005). Research of artificial geologic disasters of coast belt in east bank of Laizhou Bay, Bohai Bay. Journal of Geological Hazards and Environment Preservation, 16(3), 225–230.

    Google Scholar 

  • Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., & Rooney, J. J. (2007). The predictive accuracy of shoreline change rate methods and along shore beach variation on Maui, Hawaii. Journal of Coastal Research, 23(1), 87–105.

    Article  Google Scholar 

  • Ghanavati, E., Firouzabadi, P. Z., Jangi, A. A., & Khosravi, S. (2008). Monitoring geomorphologic changes using Landsat TM and ETMþ data in the Hendijan River delta, southwest Iran. International Journal of Remote Sensing, 29(4), 945–959.

    Article  Google Scholar 

  • Jiang, Y., Li, L. F., Kang, H., & Zhong, X. B. (2003). A remote sensing analysis of coastline change along the Bohai bay muddy coast in the past 130 years. Remote Sensing for Land & Resources, 4(2003), 54–59.

    Google Scholar 

  • Kevin, W., & El Asmar, H. M. (1999). Monitoring changing position of coastlines using thematic mapper imagery, an example from the Nile Delta. Geomorphology, 29(1–2), 93–105.

    Google Scholar 

  • Kittler, J., & Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 19(1), 41–47.

    Article  Google Scholar 

  • Kuleli, T., Guneroglu, A., Karsli, F., & Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38(10), 1141–1149.

    Article  Google Scholar 

  • Kumar, A., Narayana, A. C., & Jayappa, K. S. (2010). Shoreline changes and morphology of spits along southern Karnataka, west coast of India: a remote sensing and statistics-based approach. Geomorphology, 120(3), 133–152.

    Article  Google Scholar 

  • Leatherman, S., & Douglas, B. C. (2003). Seal level and coastal erosion require large-scale monitoring. EOS. Transactions of the American Geophysical Union, 84(2), 13–16.

    Article  Google Scholar 

  • Lee, J. S. (1981). Refined filtering of image noise using local statistics. Computer Graphics and Image Processing, 15(4), 380–389.

    Article  Google Scholar 

  • Li, X. J., & Michiel, C. J. (2010). Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems, 82(2010), S54–S61.

    Article  Google Scholar 

  • Li, R., Di, K., & Ma, R. (2001). A comparative study of shoreline mapping techniques. Halifax: Proceedings of the Fourth International Symposium on Computer Mapping and GIS for Coastal Zone Management.

    Google Scholar 

  • Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25(5), 937–958.

    Article  Google Scholar 

  • Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach. Marine Geology, 257(1–4), 11–23.

    Article  Google Scholar 

  • Marfai, M. A., Almohammad, H., Dey, S., Susanto, B., & King, L. (2008). Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environmental Monitoring Assessment, 142(2–3), 297–308.

    Article  Google Scholar 

  • Mason, D. C., Davenport, I., & Flather, R. A. (1995). Construction of an inter-tidal digital elevation model by the ‘waterline’ method. Geophysical Research Letters, 22(23), 3187–3190.

    Article  Google Scholar 

  • Mason, D. C., Davenport, I., & Flather, R. A. (1997). Interpolation of an intertidal digital elevation model from heighted shorelines: a case study in the western wash. Estuarine Coastal and Shelf Science, 45(5), 599–612.

    Article  Google Scholar 

  • Mei-e, R. (1993). Relative sea-level changes in China over the last 80 years. Journal of Coastal Research, 9(1), 229–241.

    Google Scholar 

  • Morton, R. (1991). Accurate shoreline mapping: Past, present, and future. New York: American Society of Civil Engineers.

    Google Scholar 

  • Morton, R. A. (1996). Geoindicators of coastal wetlands and shorelines. In A. R. Berger & W. J. Iams (Eds.), Geoindicators: Assessing rapid environmental changes in earth systems (pp. 207–230). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Rebelo, L. M., Finlayson, C. M., & Nagabhatla, N. (2009). Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management, 90(7), 2144–2153.

    Article  Google Scholar 

  • Ryu, J., Won, J., Min, K.D. (2002). Waterline extraction from Landsat TM data in a tidal flat. A case study in Gomso bay, Korea. Technical Report Series, vol. 83, Department of Geography and Anthropology Lousiana State University, pp. 442–456.

  • Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–165.

    Article  Google Scholar 

  • Shaghude, Y. W., Wann¨ as, K. O., & Lunde ´n, B. (2003). Assessment of shoreline changes in the western side of Zanzibar channel using satellite remote sensing. International Journal of Remote Sensing, 24(23), 4953–4967.

    Article  Google Scholar 

  • Shen, F., Hao, A., & Wu, J. P. (2008). A remotely sensed approach on waterline extraction of silty tidal flat for DEM construction, a case study in Jiuduansha shoal of Yantze River. Acta Geodaetica Et Cartographica Sinica, 37(1), 102–107.

    Google Scholar 

  • Sun, M. X., & Zhang, W. (2004). Study on coastline remote sensing survey and application in Fujian Province. Journal of Oceanography in Taiwan Strait, 23(2), 213–219.

    Google Scholar 

  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Miller, T. L. (2005). Digital Shoreline Analysis System (DSAS) version 3.0: an ArcGIS extension for calculating shoreline change. US Geological Survey Open-File Report 2005–1304.

  • Tyagi, P., & Bhosle, U. (2011). Atmospheric correction of remote sensed images in spatial and transform domain. International Journal of Image Processing, 5(5), 564–579.

    Google Scholar 

  • Vanderstraete, T., Goossens, R., & Ghabour, T. K. (2006). The use of multi-temporal Landsat images for the change detection of the coastal zone near Hurghada, Egypt. International Journal of Remote Sensing, 27(17), 3645–3655.

    Article  Google Scholar 

  • Wal, D., Pye, K., & Neal, A. (2002). Long-term morphological change in the Ribble Estuary, northwest England. Marine Geology, 189(3–4), 249–266.

    Google Scholar 

  • Wang, Y. D., Hou, X. Y., Shi, P., & Yu, L. J. (2013). Detecting shoreline changes in typical coastal wetlands of Bohai rim in North China. Wetlands, 33(4), 617–629.

    Article  Google Scholar 

  • Wu, W. (2007). Coastline evolution monitoring and estimation—a case study in the region of Nouakchott, Mauritania. International Journal of Remote Sensing, 28(24), 5461–5484.

    Article  Google Scholar 

  • Yan, H. B., Li, B. B., & Chen, M. D. (2009). Progress of researches in coastline extraction based on RS technique. Areal Research and Development, 28(1), 101–105.

    Google Scholar 

Download references

Acknowledgments

This research is funded by the CAS Strategic Priority Research Program Grant No. XDA05130703 and the Knowledge Innovation of the Chinese Academy of Sciences No. KZCX2-YW-224. We would like to thank two anonymous reviewers and the associate editor for extremely helpful comments. We thank the China Oceanic Information Network and site data collection and processing staff for contributing to tidal station data, and the agencies and institutions that funded long-term records at these sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyong Hou.

About this article

Cite this article

Wang, Y., Hou, X., Jia, M. et al. Remote Detection of Shoreline Changes in Eastern Bank of Laizhou Bay, North China. J Indian Soc Remote Sens 42, 621–631 (2014). https://doi.org/10.1007/s12524-014-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-014-0361-0

Keywords

Navigation