Skip to main content

Advertisement

Log in

Diffusion Source Detection of Volcanic Ash Cloud Using MODIS Satellite Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The massive volcanic ash cloud not only causes obvious global climate and environmental changes, but also threatens aviation safety under the background of globalization. The diffusion source detection is a key factor in the volcanic ash cloud monitoring and the diffusion research. Taking the Eyjafjallajokull’s volcanic ash cloud on April 19, 2010 in Iceland as an example, based on the analysis of the absorption spectrum characteristics in the thermal infrared spectral range, in this paper, a new diffusion source detection algorithm of volcanic ash cloud combining split window algorithm with SO2 concentration distribution is proposed from the moderate resolution imaging spectroradiometer (MODIS) satellite remote sensing images; subsequently the ash radiance index (ARI) and absorbing aerosol index (AAI) are applied as contrast to the detection results. The results show that the proposed algorithm can effectively detect the diffusion source of volcanic ash cloud, and has high consistency with the ARI and AAI distributions, and has certain potential applications in improving the detection effect of volcanic ash cloud and prediction accuracy of diffusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andronico, D., Spinetti, C., Cristaldi, A., & Buongiorno, M. F. (2009). Observations of Mt. Etna volcanic ash plumes in 2006: an integrated approach from ground-based and polar satellite Noaa-AVHRR monitoring system. Journal of Volcanology and Geothermal Research, 180(2–4), 135–147.

    Article  Google Scholar 

  • Becker, F., & Li, Z. (1990). Towards a local split window method over land surface. International Journal of Remote Sensing, 11(3), 369–393.

    Article  Google Scholar 

  • Christakos, G., Kolovos, A., Serre, M. L., & Vukovich, F. (2004). Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Transactions on Geoscience and Remote Sensing, 42(5), 991–1008.

    Article  Google Scholar 

  • Cracknell, A. P., & Xue, Y. (1996). Dynamic aspects study of surface temperature from remotely sensed data using advanced thermal inertia model. International Journal of Remote Sensing, 17(6), 2517–2532.

    Article  Google Scholar 

  • Dean, K. G., Dehn, J., Papp, K. R., Smith, S., Izbekov, P., Peterson, R., Kearney, C., & Steffke, A. (2004). Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska. Journal of Volcanology and Geothermal Research, 135(1), 51–73.

    Article  Google Scholar 

  • Ding, F., & Xu, H. Q. (2007). Sensitivity analysis of mono-window and single-channel algorithms to the possible errors in parameter estimation. Science of Surveying and Mapping, 32(1), 87–95.

    Google Scholar 

  • Ellrod, G. P., & Schreiner, A. J. (2004). Volcanic ash detection and cloud top height estimates from the GOES-12 imager: Coping without a 12 μm infrared band. Geophysical Research Letters, 31(15), 1–4.

    Article  Google Scholar 

  • Filizzola, C., Lacava, T., Marchese, F., Pergola, N., Scaffidi, I., & Tramutoli, V. (2007). Assessing RAT (robust AVHRR techniques) performances for volcanic ash cloud detection and monitoring in near real-time: the 2002 eruption of Mt. Etna (Italy). Remote Sensing of Environment, 107(3), 440–454.

    Article  Google Scholar 

  • Gangale, G., Prata, A. J., & Clarisse, L. (2010). The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sensing of Environment, 114(2), 414–425.

    Article  Google Scholar 

  • Gary, P. E. (2004). Impact on volcanic ash detection caused by the loss of the 12.0 μm “Split Window” band on GOES imagers. Journal of Volcanology and Geothermal Research, 135(1–2), 91–103.

    Google Scholar 

  • Hillger, D. W., & Clark, J. (2002). Principal component image analysis of MODIS for volcanic ash, PartII: simulation of current GOES and GOES-M imagers. Journal of Applied Meteorology, 41(10), 1003–1010.

    Article  Google Scholar 

  • Jimenez-Mufioz, J. C., & Sobrino, J. A. (2003). A generalized single channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 108(D22), 4688–4695.

    Article  Google Scholar 

  • Krotkov, N. A., Torres, O., Seftor, C., Krueger, A. J., Kostinski, A., Rose, W. I., Bluth, G. J. S., Schneider, D., & Schaefer, S. J. (1999). Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr. Geophysical Research Letters, 26(4), 455–458.

    Article  Google Scholar 

  • Krueger, A. J. (1983). Sighting of El Chichón Sulfur Dioxide Clouds with the Nimbus 7 Total Ozone Mapping Spectrometer. Science, 220(4604), 1377–1379.

    Article  Google Scholar 

  • Li, J. P. (2002). Volcanic ash’s harm on aviation flight and the consulting services. Air Traffic Management, 6, 41–42.

    Google Scholar 

  • Luke, P. F., Andrew, J. L. H., & Robert, W. (2001). Improved identification of volcanic features using Landsat 7 ETM+. Remote Sensing of Environment, 78(1–2), 180–193.

    Google Scholar 

  • Marzano, F. S., Picciotti, E., Vulpiani, G., & Montopoli, M. (2012). Synthetic signatures of volcanic ash cloud particles from X-band dual-polarization radar. IEEE Transactions on Geoscience and Remote Sensing, 50(1), 193–211.

    Article  Google Scholar 

  • Mccarthy, E. B., Bluth, G. J. S., Watson, I. M., & Tupper, A. (2008). Detection and analysis of the volcanic clouds associated with the 18 and 28 August 2000 eruption of Miyakejima volcano, Japan. International Journal of Remote Sensing, 29(22), 6597–6620.

    Article  Google Scholar 

  • Oppenheimer, C. (1998). Volcanological applications of meteorological satellites. International Journal of Remote Sensing, 19(15), 2829–2864.

    Article  Google Scholar 

  • Papp, K. R., Dean, K. G., & Dehn, J. (2005). Predicting regions susceptible to high concentrations of airborne volcanic ash in the North Pacific region. Journal of Volcanology and Geothermal Research, 148(3–4), 295–314.

    Article  Google Scholar 

  • Pergola, N., Tramutoli, V., Marchese, F., Scaffidi, I., & Lacava, T. (2004). Improving volcanic ash cloud detection by a robust satellite technique. Remote Sensing of Environment, 90(1), 1–22.

    Article  Google Scholar 

  • Prata, A. J. (1989). Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. International Journal of Remote Sensing, 10(4–5), 751–761.

    Article  Google Scholar 

  • Prata, A. J. (2009). Satellite detection of hazardous volcanic clouds and the risk to global air traffic. Natural Hazards, 51(2), 303–324.

    Article  Google Scholar 

  • Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research, 89(D5), 231–237.

    Article  Google Scholar 

  • Qin, Z. H., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 22(18), 3719–3746.

    Article  Google Scholar 

  • Rose, W. I., Self, S., Murrow, P. J., Bonadonna, C., Durant, A. J., & Ernst, G. G. J. (2008). Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bulletion of Volcanology, 70(9), 1043–1067.

    Article  Google Scholar 

  • Sahin, M., Yildiz, B. Y., Senkal, O., & Pestemalci, V. (2012). Modeling and remote sensing of land surface temperature in Turkey. Journal of the Indian Society of Remote Sensing, 40(3), 399–409.

    Article  Google Scholar 

  • Thomas, W., Erbertseder, T., Ruppert, T., Roozendael, M. V., Verdebout, J., Balis, D., Meleti, C., & Zerefos, C. (2005). On the retrieval of volcanic sulfur dioxide emissions from GOME backscatter measurements. Journal of Atmospheric Chemistry, 50(3), 295–320.

    Article  Google Scholar 

  • Tupper, A., Carn, S., Davey, J., Kamada, Y., Potts, R., Prata, F., & Tokuno, M. (2004). An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western ‘Ring of Fire’. Remote Sensing of Environment, 91(1), 27–46.

    Article  Google Scholar 

  • Wang, X., Zhao, D. Z., Huang, F. R., Yang, J. H., & Su, X. (2011). Research on monitoring of thermal pollution based on high spatial resolution image. Remote Sensing Technology and Application, 26(1), 103–110.

    Google Scholar 

  • Watson, I. M., Realmuto, V. J., Rose, W. I., Prata, A. J., Bluth, G. J. S., Gu, Y., Bader, C. E., & Yu, T. (2004). Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. Journal of Volcanology and Geothernal Research, 135(1–2), 75–89.

    Article  Google Scholar 

  • Webley, P., & Mastin, L. (2009). Improved prediction and tracking of volcanic ash clouds. Journal of Volcanology and Geothermal Research, 186(1–2), 1–9.

    Article  Google Scholar 

  • Wen, S. M., & Rose, W. I. (1994). Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. Journal of Geophysical Research, 99(D3), 5421–5431.

    Article  Google Scholar 

  • Wen, X. P., Yang, X. F., & Hu, G. D. (2011). Relationship between lands cover ration and urban heat island from remote sensing and automatic weather stations data. Journal of the Indian Society of Remote Sensing, 39(2), 193–201.

    Article  Google Scholar 

  • Xu, Y. M., Qin, Z. H., & Wan, H. X. (2010). Spatial and temporal dynamics of urban heat island and their relationship with land cover changes in urbanization process: a case study in Suzhou, China. Journal of the Indian Society of Remote Sensing, 38(4), 654–663.

    Article  Google Scholar 

  • Yao, Y. J., Nan, P., Zhang, Z. L., & Li, B. S. (2007). Application of split window algorithm in land surface temperature retrieval from thermal infrared remote sensing data. Journal of Lanzhou University of Technology, 33(6), 89–92.

    Google Scholar 

  • Yu, H. M., Xu, J. D., & ZHAO, Y. (2007). A numerical simulation of tephra transport and deposition for millennium eruption of Changbaishan Tianchi volcano. Seismology and Geology, 29(3), 522–534.

    Google Scholar 

  • Zhu, L., Liu, J., Liu, C., & Wang, M. (2011). Satellite remote sensing of volcanic ash cloud in complicated meteorological conditions. Scientia Sinica (Terrae), 41(7), 1029–1036.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Project of National Natural Science Foundation of China (Grant No. 41172303). The authors gratefully acknowledge this supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Fan Li.

About this article

Cite this article

Li, CF., Dai, YY., Zhao, JJ. et al. Diffusion Source Detection of Volcanic Ash Cloud Using MODIS Satellite Data. J Indian Soc Remote Sens 42, 611–619 (2014). https://doi.org/10.1007/s12524-013-0360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0360-6

Keywords

Navigation